How to accurately detect and localize car fuse? - opencv

Currently I'm working on a project, where I need to measure the width of car fuse wire. In order to achieve that I need to detect and localize the fuse on the image. fuse_image
My plan is to find bounding rectangle region with the fuse and then search for a wire contours in fixed position of that region.fuse_contours
I have already tried ORB, BRISK feature based template matching, but the results were not acceptable. Maybe anyone can suggest some possible methods to solve this task?

We can start the problem by applying Canny operation to see the features of the image. Result is:
The aim is to calculate the width. Therefore we only need the left and right outer length of the image. We don't need inner lines. To remove the inner features we can smooth the image.
How do we accurately calculate the width? What part of the features can we take as an reference? If we consider the base? The base features are:
How do we find the base feature coordinates?
Blue point is the one with the highest y coordinate value
Red point is the one with the highest x coordinate value
For all detected line coordinates, we need to find the highest y coordinate value with the corresponding x coordinate value. We need to find the highest x coordinate value with the corresponding y value.
For detecting line coordinates we can use fast line detector. Result will be:
We can calculate the euclidian-distance, which will be: 146.49 pixel
The idea is based on the finding the base and then calculating the euclidean-distance.
Update
The orientation of the fuse can be random.
First, we need to get the fuse part of the image.
Second, we need to get the canny features (or any other filtering method)
At this point we need to find the left (blue-dot) and right (red-dot) part of the fuse:
If we connect them:
We will have an approximate length of the fuse.
So How do we find the left and right parts of the fuse?
Finding left part:
1. From the current x1, x2 tuples
2. If min(x1, x2) < x_min
3. x_min = min(x1, x2)
Finding right part:
1. From the current x1, x2 tuples
2. If max(x1, x2) > x_max
3. x_max = max(x1, x2)
This is my idea for approaching the problem. You can modify for better results.
Code:
# Load libraries
import cv2
import numpy as np
# Load the image
img = cv2.imread("E8XlZ.jpg")
# Get the image dimension
(h, w) = img.shape[:2]
# Convert to hsv
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Get the binary-mask
msk = cv2.inRange(hsv, np.array([0, 24, 161]), np.array([77, 255, 217]))
# Display the mask
cv2.imshow("msk", msk)
cv2.waitKey(0)
# Smooth the image
gauss = cv2.GaussianBlur(msk, (21, 21), 0)
# Canny features
cny = cv2.Canny(gauss, 50, 200)
# Display canny features
cv2.imshow("cny", cny)
cv2.waitKey(0)
# Initialize line-detector
lns = cv2.ximgproc.createFastLineDetector().detect(cny)
# Initialize temporary variables
x_min, x_max, y_min, y_max = w, 0, 0, 0
# Detect the lines
for line in lns:
# Get current coordinates
x1 = int(line[0][0])
y1 = int(line[0][1])
x2 = int(line[0][2])
y2 = int(line[0][3])
# Get maximum coordinates
if max(x1, x2) > x_max:
x_max = max(x1, x2)
y_max = y1 if x_max == x1 else y2
if min(x1, x2) < x_min:
x_min = min(x1, x2)
y_min = y1 if x_min == x1 else y2
# Draw the points
cv2.circle(img, (x_min, int((y_min + y_max)/2)), 3, (255, 0, 0), 5)
cv2.circle(img, (x_max, int((y_min + y_max)/2)), 3, (0, 0, 255), 5)
# Write coordinates to the console
print("Coordinates: ({}, {})->({}, {})".format(x_min, int((y_min + y_max)/2), x_max, int((y_min + y_max)/2)))
# Draw the minimum and maximum coordinates
cv2.line(img, (x_min, int((y_min + y_max)/2)), (x_max, int((y_min + y_max)/2)), (0, 255, 0), 5)
# Calculate the euclidean distance
pt1 = np.array((x_min, int((y_min + y_max)/2)))
pt2 = np.array((x_max, int((y_min + y_max)/2)))
dist = np.linalg.norm(pt1 - pt2)
print("Result: %.2f pixel" % dist)
# Display the result
cv2.imshow("img", img)
cv2.waitKey(0)

Related

Find rectangle box from multiple box in contours opencv

I have a problem about how to find the biggest rectangle among these small rectangles in contours opencv please help me
Here is the small rectangles from cv2.findContours()
I got a list of contours. I plot it and I got this
I want the yellow rectangle box
This is the codes
img_grey = cv2.cvtColor(bg_img,cv2.COLOR_BGR2GRAY)
ret,thresh_img = cv2.threshold(img_grey, 100, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(thresh_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
Does it have a way to find the big rectangle(yellow)
Thank you
You need to proceed from where you left after finding contours.
Approach:
Initialize an array
Iterate through each contour and store its points in the array
Find the maximum and minimum values in both axis ( numpy is your friend!)
Draw a rectangle using them.
Code:
# create copy of original color image
img2 = bg_img.copy()
# Initialize array with value (0,0)
cc = np.array([[0, 0]], dtype=int)
# Iterate through each contour
for i, c in enumerate(contours):
# reshape from (L, 1, 2) to (L, 2), where L is a tuple of (x, y)
c_modified = c.reshape(len(contours[i]), 2)
# concatenate to initial array
cc = np.concatenate((cc, c_modified), axis = 0)
# remove the first element of initialized array
new_cc = cc[1:]
# obtain max and min value along Y-axis
y2 = np.max(new_cc[:,1])
y1 = np.min(new_cc[:,1])
# obtain max and min value along X-axis
x2 = np.max(new_cc[:,0])
x1 = np.min(new_cc[:,0])
# Draw rectangle using those points on copy of the image
img2 = cv2.rectangle(img2, (x1, y1), (x2, y2), (255,255, 0, 3)
Result:

How to test OpenCV DNN module accuracy? It does not predict correct detections for YOLOv3. Whereas Darknet detector detects correctly

OpenCV DNN module does not predict correct detections for YOLOv3. Whereas the Darknet detector detects correctly.
System information (version)
OpenCV => 4.2.1 and 4.4.x
Operating System / Platform => Ubuntu 18.04 64Bit
I tested results with compiled OpenCV from source code and I tried with pre-built opencv-python also but OpenCV DNN detects wrong objects.
Whereas Darknet detector detects correctly.
Correct detection with darknet detector:
Wrong detection with OpenCV DNN module:
YOLOv3 network and model weights are from https://github.com/AlexeyAB/darknet
modelWeights: yolov3.weights
modelConfiguration: yolov3.cfg
ClassesFile: coco.names
Detailed description
Please see the output images at the link appended below. (correct detection with darknet detector)
compared with the wrong detection (with OpenCV DNN)
Output images available in this Google Drive link.
The above link includes test-images also for steps to test
# The following code is partial to demonstrate steps
net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
layerNames = net.getLayerNames()
layerNames = [layerNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# construct a blob from the input frame and then perform a forward pass of the YOLO object detector,
# giving us our bounding boxes and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
layerOutputs = net.forward(layerNames)
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > args["confidence"]:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"], args["threshold"])
dets = []
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
dets.append([x, y, x+w, y+h, confidences[i]])
if len(boxes) > 0:
i = int(0)
for box in boxes:
# extract the bounding box coordinates
(x, y) = (int(box[0]), int(box[1]))
(w, h) = (int(box[2]), int(box[3]))
# draw a bounding box rectangle and label on the image
# color = [int(c) for c in COLORS[classIDs[i]]]
# cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
color = [int(c) for c in COLORS[indexIDs[i] % len(COLORS)]]
cv2.rectangle(frame, (x, y), (w, h), color, 2)
cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2)# 1.0 0.5, color, 2)
i += 1
cv2.imwrite("detection-output.jpg", frame)
i think your detection is correct, since all of your labels is car, the problem is the text you have in this line:
cv2.putText(frame, text, (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2)
you should put the class name in the text but i cant find where the text is defined. your code should be like this :
cv2.putText(frame, classes[class_ids[index]], (x + 5, y + 20), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, colors,2)
but in my experience , darknet has better detection than opencv dnn.

How to detect test strips with OpenCV?

I'm a newbie to computer vision, and I'm trying to detect all the test strips in this image:
The result I'm trying to get:
I assume it should be very easy, because all the target objects are in rectangular shape and have a fixed aspect ratio. But I have no idea which algorithm or function should I use.
I've tried edge detection and the 2D feature detection example in OpenCV, but the result is not ideal. How should I detect these similar objects but with small differences?
Update:
The test strips can vary in colors, and of course, the shade of the result lines. But they all have the same references lines, as showing in the picture:
I don't know how should I describe these simple features for object detection, as most examples I found online are for complex objects like a building or a face.
The solution is not exact, but it provides a good starting point. You have to play with the parameters though. It would greatly help you if you partition the strips using some threshold method and then apply hough lines individually as #api55 mentioned.
Here are the results I got.
Code.
import cv2
import numpy as np
# read image
img = cv2.imread('KbxN6.jpg')
# filter it
img = cv2.GaussianBlur(img, (11, 11), 0)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# get edges using laplacian
laplacian_val = cv2.Laplacian(gray_img, cv2.CV_32F)
# lap_img = np.zeros_like(laplacian_val, dtype=np.float32)
# cv2.normalize(laplacian_val, lap_img, 1, 255, cv2.NORM_MINMAX)
# cv2.imwrite('laplacian_val.jpg', lap_img)
# apply threshold to edges
ret, laplacian_th = cv2.threshold(laplacian_val, thresh=2, maxval=255, type=cv2.THRESH_BINARY)
# filter out salt and pepper noise
laplacian_med = cv2.medianBlur(laplacian_th, 5)
# cv2.imwrite('laplacian_blur.jpg', laplacian_med)
laplacian_fin = np.array(laplacian_med, dtype=np.uint8)
# get lines in the filtered laplacian using Hough lines
lines = cv2.HoughLines(laplacian_fin,1,np.pi/180,480)
for rho,theta in lines[0]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
# overlay line on original image
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
# cv2.imwrite('processed.jpg', img)
# cv2.imshow('Window', img)
# cv2.waitKey(0)
This is an alternative solution by using the function findCountours in combination with canny edge detection. The code is based very slightly on this tutorial
import cv2
import numpy as np
import imutils
image = cv2.imread('test.jpg')
resized = imutils.resize(image, width=300)
ratio = image.shape[0] / float(resized.shape[0])
# convert the resized image to grayscale, blur it slightly,
# and threshold it
gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(resized,100,200)
cv2.imshow('dsd2', edges)
cv2.waitKey(0)
cnts = cv2.findContours(edges.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
sd = ShapeDetector()
# loop over the contours
for c in cnts:
# compute the center of the contour, then detect the name of the
# shape using only the contour
M = cv2.moments(c)
cX = int((M["m10"] / M["m00"]) * ratio)
cY = int((M["m01"] / M["m00"]) * ratio)
# multiply the contour (x, y)-coordinates by the resize ratio,
# then draw the contours and the name of the shape on the image
c = c.astype("float")
c *= ratio
c = c.astype("int")
cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
#show the output image
#cv2.imshow("Image", image)
#cv2.waitKey(0)
cv2.imwrite("erg.jpg",image)
Result:
I guess it can be improved by tuning following parameters:
image resizing width
CHAIN_APPROX_NONE (findContour Docs)
It is maybe also usefull to filter small contours or merge contours which are close to each other.

OpenCV: detect flawed rectangle

currently I'm working on a project where I try to find the corners of the rectangle's surface in a photo using OpenCV (Python, Java or C++)
I've selected desired surface by filtering color, then I've got mask and passed it to the cv2.findContours:
cnts, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cnt = sorted(cnts, key = cv2.contourArea, reverse = True)[0]
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.02*peri, True)
if len(approx) == 4:
cv2.drawContours(mask, [approx], -1, (255, 0, 0), 2)
This gives me an inaccurate result:
Using cv2.HoughLines I've managed to get 4 straight lines that accurately describe the surface. Their intersections are exactly what I need:
edged = cv2.Canny(mask, 10, 200)
hLines = cv2.HoughLines(edged, 2, np.pi/180, 200)
lines = []
for rho,theta in hLines[0]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(mask, (x1,y1), (x2,y2), (255, 0, 0), 2)
lines.append([[x1,y1],[x2,y2]])
The question is: is it possible to somehow tweak findContours?
Another solution would be to find coordinates of intersections. Any clues for this approach are welcome :)
Can anybody give me a hint how to solve this problem?
Finding intersection is not so trivial problem as it seems to be, but before the intersection points will be found, following problems should be considered:
The most important thing is to choose the right parameters for the HoughLines function, since it can return from 0 to an infinite numbers of lines (we need 4 parallel)
Since we do not know in what order these lines go, they need to be compared with each other
Because of the perspective, parallel lines are no longer parallel, so each line will have a point of intersection with the others. A simple solution would be to filter the coordinates located outside the photo. But it may happen that an undesirable intersection will be within the photo.
The coordinates should be sorted. Depending on the task, it could be done in different ways.
cv2.HoughLines will return an array with the values of rho and theta for each line.
Now the problem becomes a system of equations for all lines in pairs:
def intersections(edged):
# Height and width of a photo with a contour obtained by Canny
h, w = edged.shape
hl = cv2.HoughLines(edged,2,np.pi/180,190)[0]
# Number of lines. If n!=4, the parameters should be tuned
n = hl.shape[0]
# Matrix with the values of cos(theta) and sin(theta) for each line
T = np.zeros((n,2),dtype=np.float32)
# Vector with values of rho
R = np.zeros((n),dtype=np.float32)
T[:,0] = np.cos(hl[:,1])
T[:,1] = np.sin(hl[:,1])
R = hl[:,0]
# Number of combinations of all lines
c = n*(n-1)/2
# Matrix with the obtained intersections (x, y)
XY = np.zeros((c,2))
# Finding intersections between all lines
for i in range(n):
for j in range(i+1, n):
XY[i+j-1, :] = np.linalg.inv(T[[i,j],:]).dot(R[[i,j]])
# filtering out the coordinates outside the photo
XY = XY[(XY[:,0] > 0) & (XY[:,0] <= w) & (XY[:,1] > 0) & (XY[:,1] <= h)]
# XY = order_points(XY) # obtained points should be sorted
return XY
here is the result:
It is possible to:
select the longest contour
break it into segments and group them by gradient
Fit lines to the largest four groups
Find intersection points
But then, Hough transform does nearly the same thing. Is there any particular reason for not using it?
Intersection points of lines are very easy to calculate. A high-school coordinate geometry lesson can provide you with the algorithm.

How to find corners on a Image using OpenCv

I´m trying to find the corners on a image, I don´t need the contours, only the 4 corners. I will change the perspective using 4 corners.
I´m using Opencv, but I need to know the steps to find the corners and what function I will use.
My images will be like this:(without red points, I will paint the points after)
EDITED:
After suggested steps, I writed the code: (Note: I´m not using pure OpenCv, I´m using javaCV, but the logic it´s the same).
// Load two images and allocate other structures (I´m using other image)
IplImage colored = cvLoadImage(
"res/scanteste.jpg",
CV_LOAD_IMAGE_UNCHANGED);
IplImage gray = cvCreateImage(cvGetSize(colored), IPL_DEPTH_8U, 1);
IplImage smooth = cvCreateImage(cvGetSize(colored), IPL_DEPTH_8U, 1);
//Step 1 - Convert from RGB to grayscale (cvCvtColor)
cvCvtColor(colored, gray, CV_RGB2GRAY);
//2 Smooth (cvSmooth)
cvSmooth( gray, smooth, CV_BLUR, 9, 9, 2, 2);
//3 - cvThreshold - What values?
cvThreshold(gray,gray, 155, 255, CV_THRESH_BINARY);
//4 - Detect edges (cvCanny) -What values?
int N = 7;
int aperature_size = N;
double lowThresh = 20;
double highThresh = 40;
cvCanny( gray, gray, lowThresh*N*N, highThresh*N*N, aperature_size );
//5 - Find contours (cvFindContours)
int total = 0;
CvSeq contour2 = new CvSeq(null);
CvMemStorage storage2 = cvCreateMemStorage(0);
CvMemStorage storageHull = cvCreateMemStorage(0);
total = cvFindContours(gray, storage2, contour2, Loader.sizeof(CvContour.class), CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE);
if(total > 1){
while (contour2 != null && !contour2.isNull()) {
if (contour2.elem_size() > 0) {
//6 - Approximate contours with linear features (cvApproxPoly)
CvSeq points = cvApproxPoly(contour2,Loader.sizeof(CvContour.class), storage2, CV_POLY_APPROX_DP,cvContourPerimeter(contour2)*0.005, 0);
cvDrawContours(gray, points,CvScalar.BLUE, CvScalar.BLUE, -1, 1, CV_AA);
}
contour2 = contour2.h_next();
}
}
So, I want to find the cornes, but I don´t know how to use corners function like cvCornerHarris and others.
First, check out /samples/c/squares.c in your OpenCV distribution. This example provides a square detector, and it should be a pretty good start on how to detect corner-like features. Then, take a look at OpenCV's feature-oriented functions like cvCornerHarris() and cvGoodFeaturesToTrack().
The above methods can return many corner-like features - most will not be the "true corners" you are looking for. In my application, I had to detect squares that had been rotated or skewed (due to perspective). My detection pipeline consisted of:
Convert from RGB to grayscale (cvCvtColor)
Smooth (cvSmooth)
Threshold (cvThreshold)
Detect edges (cvCanny)
Find contours (cvFindContours)
Approximate contours with linear features (cvApproxPoly)
Find "rectangles" which were structures that: had polygonalized contours possessing 4 points, were of sufficient area, had adjacent edges were ~90 degrees, had distance between "opposite" vertices was of sufficient size, etc.
Step 7 was necessary because a slightly noisy image can yield many structures that appear rectangular after polygonalization. In my application, I also had to deal with square-like structures that appeared within, or overlapped the desired square. I found the contour's area property and center of gravity to be helpful in discerning the proper rectangle.
At a first glance, for a human eye there are 4 corners. But in computer vision, a corner is considered to be a point that has large gradient change in intensity across its neighborhood. The neighborhood can be a 4 pixel neighborhood or an 8 pixel neighborhood.
In the equation provided to find the gradient of intensity, it has been considered for 4-pixel neighborhood SEE DOCUMENTATION.
Here is my approach for the image in question. I have the code in python as well:
path = r'C:\Users\selwyn77\Desktop\Stack\corner'
filename = 'env.jpg'
img = cv2.imread(os.path.join(path, filename))
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #--- convert to grayscale
It is a good choice to always blur the image to remove less possible gradient changes and preserve the more intense ones. I opted to choose the bilateral filter which unlike the Gaussian filter doesn't blur all the pixels in the neighborhood. It rather blurs pixels which has similar pixel intensity to that of the central pixel. In short it preserves edges/corners of high gradient change but blurs regions that have minimal gradient changes.
bi = cv2.bilateralFilter(gray, 5, 75, 75)
cv2.imshow('bi',bi)
To a human it is not so much of a difference compared to the original image. But it does matter. Now finding possible corners:
dst = cv2.cornerHarris(bi, 2, 3, 0.04)
dst returns an array (the same 2D shape of the image) with eigen values obtained from the final equation mentioned HERE.
Now a threshold has to be applied to select those corners beyond a certain value. I will use the one in the documentation:
#--- create a black image to see where those corners occur ---
mask = np.zeros_like(gray)
#--- applying a threshold and turning those pixels above the threshold to white ---
mask[dst>0.01*dst.max()] = 255
cv2.imshow('mask', mask)
The white pixels are regions of possible corners. You can find many corners neighboring each other.
To draw the selected corners on the image:
img[dst > 0.01 * dst.max()] = [0, 0, 255] #--- [0, 0, 255] --> Red ---
cv2.imshow('dst', img)
(Red colored pixels are the corners, not so visible)
In order to get an array of all pixels with corners:
coordinates = np.argwhere(mask)
UPDATE
Variable coor is an array of arrays. Converting it to list of lists
coor_list = [l.tolist() for l in list(coor)]
Converting the above to list of tuples
coor_tuples = [tuple(l) for l in coor_list]
I have an easy and rather naive way to find the 4 corners. I simply calculated the distance of each corner to every other corner. I preserved those corners whose distance exceeded a certain threshold.
Here is the code:
thresh = 50
def distance(pt1, pt2):
(x1, y1), (x2, y2) = pt1, pt2
dist = math.sqrt( (x2 - x1)**2 + (y2 - y1)**2 )
return dist
coor_tuples_copy = coor_tuples
i = 1
for pt1 in coor_tuples:
print(' I :', i)
for pt2 in coor_tuples[i::1]:
print(pt1, pt2)
print('Distance :', distance(pt1, pt2))
if(distance(pt1, pt2) < thresh):
coor_tuples_copy.remove(pt2)
i+=1
Prior to running the snippet above coor_tuples had all corner points:
[(4, 42),
(4, 43),
(5, 43),
(5, 44),
(6, 44),
(7, 219),
(133, 36),
(133, 37),
(133, 38),
(134, 37),
(135, 224),
(135, 225),
(136, 225),
(136, 226),
(137, 225),
(137, 226),
(137, 227),
(138, 226)]
After running the snippet I was left with 4 corners:
[(4, 42), (7, 219), (133, 36), (135, 224)]
UPDATE 2
Now all you have to do is just mark these 4 points on a copy of the original image.
img2 = img.copy()
for pt in coor_tuples:
cv2.circle(img2, tuple(reversed(pt)), 3, (0, 0, 255), -1)
cv2.imshow('Image with 4 corners', img2)
Here's an implementation using cv2.goodFeaturesToTrack() to detect corners. The approach is
Convert image to grayscale
Perform canny edge detection
Detect corners
Optionally perform 4-point perspective transform to get top-down view of image
Using this starting image,
After converting to grayscale, we perform canny edge detection
Now that we have a decent binary image, we can use cv2.goodFeaturesToTrack()
corners = cv2.goodFeaturesToTrack(canny, 4, 0.5, 50)
For the parameters, we give it the canny image, set the maximum number of corners to 4 (maxCorners), use a minimum accepted quality of 0.5 (qualityLevel), and set the minimum possible Euclidean distance between the returned corners to 50 (minDistance). Here's the result
Now that we have identified the corners, we can perform a 4-point perspective transform to obtain a top-down view of the object. We first order the points clockwise then draw the result onto a mask.
Note: We could have just found contours on the Canny image instead of doing this step to create the mask, but pretend we only had the 4 corner points to work with
Next we find contours on this mask and filter using cv2.arcLength() and cv2.approxPolyDP(). The idea is that if the contour has 4 points, then it must be our object. Once we have this contour, we perform a perspective transform
Finally we rotate the image depending on the desired orientation. Here's the result
Code for only detecting corners
import cv2
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 120, 255, 1)
corners = cv2.goodFeaturesToTrack(canny,4,0.5,50)
for corner in corners:
x,y = corner.ravel()
cv2.circle(image,(x,y),5,(36,255,12),-1)
cv2.imshow('canny', canny)
cv2.imshow('image', image)
cv2.waitKey()
Code for detecting corners and performing perspective transform
import cv2
import numpy as np
def rotate_image(image, angle):
# Grab the dimensions of the image and then determine the center
(h, w) = image.shape[:2]
(cX, cY) = (w / 2, h / 2)
# grab the rotation matrix (applying the negative of the
# angle to rotate clockwise), then grab the sine and cosine
# (i.e., the rotation components of the matrix)
M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# Compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# Adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
# Perform the actual rotation and return the image
return cv2.warpAffine(image, M, (nW, nH))
def order_points_clockwise(pts):
# sort the points based on their x-coordinates
xSorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
# now, sort the right-most coordinates according to their
# y-coordinates so we can grab the top-right and bottom-right
# points, respectively
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
(tr, br) = rightMost
# return the coordinates in top-left, top-right,
# bottom-right, and bottom-left order
return np.array([tl, tr, br, bl], dtype="int32")
def perspective_transform(image, corners):
def order_corner_points(corners):
# Separate corners into individual points
# Index 0 - top-right
# 1 - top-left
# 2 - bottom-left
# 3 - bottom-right
corners = [(corner[0][0], corner[0][1]) for corner in corners]
top_r, top_l, bottom_l, bottom_r = corners[0], corners[1], corners[2], corners[3]
return (top_l, top_r, bottom_r, bottom_l)
# Order points in clockwise order
ordered_corners = order_corner_points(corners)
top_l, top_r, bottom_r, bottom_l = ordered_corners
# Determine width of new image which is the max distance between
# (bottom right and bottom left) or (top right and top left) x-coordinates
width_A = np.sqrt(((bottom_r[0] - bottom_l[0]) ** 2) + ((bottom_r[1] - bottom_l[1]) ** 2))
width_B = np.sqrt(((top_r[0] - top_l[0]) ** 2) + ((top_r[1] - top_l[1]) ** 2))
width = max(int(width_A), int(width_B))
# Determine height of new image which is the max distance between
# (top right and bottom right) or (top left and bottom left) y-coordinates
height_A = np.sqrt(((top_r[0] - bottom_r[0]) ** 2) + ((top_r[1] - bottom_r[1]) ** 2))
height_B = np.sqrt(((top_l[0] - bottom_l[0]) ** 2) + ((top_l[1] - bottom_l[1]) ** 2))
height = max(int(height_A), int(height_B))
# Construct new points to obtain top-down view of image in
# top_r, top_l, bottom_l, bottom_r order
dimensions = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1],
[0, height - 1]], dtype = "float32")
# Convert to Numpy format
ordered_corners = np.array(ordered_corners, dtype="float32")
# Find perspective transform matrix
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
return cv2.warpPerspective(image, matrix, (width, height))
image = cv2.imread('1.png')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 120, 255, 1)
corners = cv2.goodFeaturesToTrack(canny,4,0.5,50)
c_list = []
for corner in corners:
x,y = corner.ravel()
c_list.append([int(x), int(y)])
cv2.circle(image,(x,y),5,(36,255,12),-1)
corner_points = np.array([c_list[0], c_list[1], c_list[2], c_list[3]])
ordered_corner_points = order_points_clockwise(corner_points)
mask = np.zeros(image.shape, dtype=np.uint8)
cv2.fillPoly(mask, [ordered_corner_points], (255,255,255))
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.015 * peri, True)
if len(approx) == 4:
transformed = perspective_transform(original, approx)
result = rotate_image(transformed, -90)
cv2.imshow('canny', canny)
cv2.imshow('image', image)
cv2.imshow('mask', mask)
cv2.imshow('transformed', transformed)
cv2.imshow('result', result)
cv2.waitKey()
find contours with RETR_EXTERNAL option.(gray -> gaussian filter -> canny edge -> find contour)
find the largest size contour -> this will be the edge of the rectangle
find corners with little calculation
Mat m;//image file
findContours(m, contours_, hierachy_, RETR_EXTERNAL);
auto it = max_element(contours_.begin(), contours_.end(),
[](const vector<Point> &a, const vector<Point> &b) {
return a.size() < b.size(); });
Point2f xy[4] = {{9000,9000}, {0, 1000}, {1000, 0}, {0,0}};
for(auto &[x, y] : *it) {
if(x + y < xy[0].x + xy[0].y) xy[0] = {x, y};
if(x - y > xy[1].x - xy[1].y) xy[1] = {x, y};
if(y - x > xy[2].y - xy[2].x) xy[2] = {x, y};
if(x + y > xy[3].x + xy[3].y) xy[3] = {x, y};
}
xy[4] will be the four corners.
I was able to extract four corners this way.
Apply houghlines to the canny image - you will get a list of points
apply convex hull to this set of points

Resources