I need to find the intrinsic parameters of a CCTV camera using a set of historic footage images (That is all I got, no control on the environment, thus no chessboard calibration).
The good news is that I have the access to some ground-truth real-world coordinates, visible in most of the images.
Just wondering if there is any solid approach to come up with the camera intrinsic parameters.
P.S. I already found the homography matrix using cv2.findHomography in Python.
P.S. I have already tested QTcalib on two machines, but it is unable to visualize the images in the first place. Not sure what is wrong with it.
Thanks in advance.
intrinsic parameters contain both fx fy cx cy and skew with additional distortion parameters k1-k5 r1-r2.
Assuming you have no distortion and cx and cy are perfectly in the center. Image origin at top left as a normal understanding of the image. As you say you know some ground truth level 3D points.3D measurements are with respect to camera optical axis. Then this 3D point P can be projected into camera image plane called p. The P p O(the camera optical center) with center lines forms isosceles triangle.
fx / (p_x-cx) = P_z / P_x
fx = (p_x-cx) * P_z / P_x
The same goes for the fy. and usually fx and fy are the same.
This is under the perfect assumption that you don't have distortion on camera. If you start to have distortion, then you need to find enough sample points all over the image to form distortion understanding as shown below. One or 2 points won't give you the whole picture understanding.
There are some cheats in some papers that using sea vanishing lines(see ref, it is a series of works) or perfect 3D building vanishing points to detect the distortion. We start from extrinsic to intrinsic and it can get some good guess after some trial eventually. But it is very much in research and can not apply to general cases.
Ref: Han Wang, Wei Mou, Xiaozheng Mou, Shenghai Yuan, Soner Ulun, Shuai Yang and Bok-Suk Shin, An Automatic Self-Calibration Approach for Wide Baseline Stereo Cameras Using Sea Surface Images, unmanned system
If all you have is a video and a few 3d points, your best bet is probably to matchmove it, that is, do a manually assisted bundle adjustment using a 3D computer graphics environment, e.g. Blender. There are a lot of tutorials online on how to do it (example). To add the 3d points as constraints, you build some shapes representing them in the virtual world (e.g. some small spheres) and place them so that their relative positions match the ground truth you have, then add them to the tracker solution.
Related
I am trying to find the coordinates of an object, which is detected from single camera, by using OpenCV. The camera will be mounted on the drone, looking through directly to the surface.
I have:
-Camera's coordinates from GPS sensor on the drone.
-Camera's height .
-Camera's intrinsic parameters.
3D Reconstruction formula
According to this formula, I need to find the extrinsic parameters to find the real world coordinates. I suppose to be use OpenCV’s solvePnP method to find extrinsic parameters. As I know, extrinsic parameters are about the camera location but my camera will be on the drone and the location will be change. Is the extrinsic parameters are constant just like the intrinsic parameters?
Is there any other way to do this calculation?
What you're trying to do is what is called monoplotting. In order to estimate XY real world coordinates from a single image you need to know the following:
X0, Y0, Z0 real world coordinates of your camera
Exterior orientation of your camera (Pitch, Roll and Yaw)
Interior orientation of your camera (focal length, principle point in x and y direction, radial and tangential distortion parameters)
So the XYZ of your camera and the exterior orientations are typically stored within the exif data of your image. This does however depend on the drone. There are some good python modules for extracting this information in the images. I use exifread.
The interior orientation can be more difficult to get, as you need to perform at camera calibration, which you can do with OpenCV. You should be able to use the tutorial Yunus linked in his comment. However there is a shortcut if you use photogrammetry software from pix4D, you can use their camera database which stores information about many different drones and their interior orientations. They are not perfect but should be alright for many use cases, see link.
When you have all of these parameters, you need to do the following:
Undistort your images
Create image coordinates of the points you wish to know the real world coordinate of, use undistorted image.
Create rotation matrices with rotations along X,Y,Z axis and do matrix multiplikation on them (RXRYRZ)
Apply collinearity equations
Regarding 1. you can use cv2.undistort for this, the link Yunus provided have a tutorial for this as well.
Regarding 3, I'm sure OpenCV probably can provide this matrix for you, but creating the function for your self is quite easy and good for understanding what is going on. See wikipedia: link It can be a little confusing which of the pitch, roll, yaw angles to use for which matrices. This all depends on how your cameras exterior coordinate system is. The typical convention is that pitch is around x, roll is around y and yaw is around z.
Regarding 4. The collinearity equations depends on the rotation matrices you created, see: link the term Z-Z0 just means the negative relative height above the object you try to find coordinates for. So if you do not have the relative height of your drone you need to know the height of your object and subtract the drones height from the objects height (you'll get a negative number).
I hope this helps you and have pointed you towards the right direction.
My problem statement is very simple. But I am unable to get the opencv calibration work for me. I am using the code from here : source code.
I have to take images parallel to the camera at a fixed distance. I tried taking test images (about 20 of them) only parallel to the camera as well as at different planes. Also I changed the size and the no of squares.
What would be the best way to calibrate in this scenario?
The undistorted image is cropped later, that's why it looks smaller.
After going through the images closely, the pincushion distortion seems to have been corrected. But the "trapezoidal" distortion still remains. Since the camera is mounted in a closed box, the planes at which I can take images is limited.
To simplify what Vlad already said: It is theoretically impossible to calibrate your camera with test images only parallel to the camera. You have to change your calibration board's orientation. In fact, you should have different orientation in each test image.
Check out the first two images in the link below to see how the calibration board should be slanted (or tilted):
http://www.vision.caltech.edu/bouguetj/calib_doc/
think about calibration problem as finding a projection matrix P:
image_points = P * 3d_points, where P = intrinsic * extrinsic
Now just bear with me:
You basically are interested in intrinsic part but the calibration algorithm has to find both intrinsic and extrinsic. Now, each column of projection matrix can be obtained if you select a 3D point at infinity, for example xInf = [1, 0, 0, 0]. This point is at infinity because when you transform it from homogeneous coordinates to Cartesian you get
[1/0, 0, 0]. If you multiply a projection matrix with a point at infinity you will get its corresponding column (1st for Xinf, 2nd for yInf, 3rd for zInf and 4th for camera center).
Thus the conclusion is simple - to get a projection matrix (that is a successful calibration) you have to clearly see points at infinity or vanishing points from the converging extensions of lines in your chessboard rig (aka end of the railroad tracks at the horizon). Your images don’t make it easy to detect vanishing points since you don’t slant your chessboard, nor rotate nor scale it by stepping back. Thus your calibration will always fail.
I'm doing a mobile augmented reality app. I need to calibrate my camera to get the intrinsic and extrinsic parameters using chessboard calibration.
Can I assum that if I calibrate my nexus 4, all nexus will have the same focal length, skew factor and distortion matrix ?
Thanks
Well, the answer can be both YES and NO. As you say, in real life none camera is exactly the same with another one, not even if they came from the same manufacturer. But, in order to make our lifes easier, yes we use this simplification, even for photogrammetric/computer vision projects, were the accuracy demands are quite high.
Most of the cameras come with undistortion operation coded into a camera pipeline so you most likely don't need to search for distortion parameters at all. Just check that straight lines at the image periphery are really straight. I expect the skew to be close to zero and fx=fy since pixels are square.
Apart from the parameters you mentioned there is also two for principal points Cx, Cy (intersection of an optical axis with the sensor that is often close to w/2, h/2). So overall you have only 3 parameters: F, Cx, Cy with the first one being the most variable among phones of the same model (from my experience). If you aren't using your phone to figure a relative position of another camera most likely you need to know only focal length accurately.
Obviously when you need to worry about a single parameter there are easier ways to get it than using a chessboard rig and trying to find extrinsic parameters in addition to the intrinsic ones. You can figure it out even without measurements - just quire a camera field of view (such as getHorizontalViewAngle()) and use
tan(fov) = image_width/2 / f
Alternatively you can do a simple measurement keeping your phone parallel to the target: for a vertical target of size H that produces image of h pixels you get f as
f/z = h/H
Well... if this camera has a built-in autofocus, the focal length will be changed all the time
I have used openCV to calculate the homography relating to views of the same plane by using features and matching them. Is there any way to recover the plane itsself or the plane normal from this homography? (I am looking for an equation where H is the input and the normal n is the output.)
If you have the calibration of the cameras, you can extract the normal of the plane, but not the distance to the plane (i.e. the transformation that you obtain is up to scale), as Wikipedia explains. I don't know any implementation to do it, but here you are a couple of papers that deal with that problem (I warn you it is not straightforward): Faugeras & Lustman 1988, Vargas & Malis 2005.
You can recover the real translation of the transformation (i.e. the distance to the plane) if you have at least a real distance between two points on the plane. If that is the case, the easiest way to go with OpenCV is to first calculate the homography, then obtain four points on the plane with their 2D coordinates and the real 3D ones (you should be able to obtain them if you have a real measurement on the plane), and using PnP finally. PnP will give you a real transformation.
Rectifying an image is defined as making epipolar lines horizontal and lying in the same row in both images. From your description I get that you simply want to warp the plane such that it is parallel to the camera sensor or the image plane. This has nothing to do with rectification - I’d rather call it an obtaining a bird’s-eye view or a top view.
I see the source of confusion though. Rectification of images usually involves multiplication of each image with a homography matrix. In your case though each point in sensor plane b:
Xb = Hab * Xa = (Hb * Ha^-1) * Xa, where Ha is homography from the plane in the world to the sensor a; Ha and intrinsic camera matrix will give you a plane orientation but I don’t see an easy way to decompose Hab into Ha and Hb.
A classic (and hard) way is to find a Fundamental matrix, restore the Essential matrix from it, decompose the Essential matrix into camera rotation and translation (up to scale), rectify both images, perform a dense stereo, then fit a plane equation into 3d points you reconstruct.
If you interested in the ground plane and you operate an embedded device though, you don’t even need two frames - a top view can be easily recovered from a single photo, camera elevation from the ground (H) and a gyroscope (or orientation vector) readings. A simple diagram below explains the process in 2D case: first picture shows how to restore Z (depth) coordinate to every point on the ground plane; the second picture shows a plot of the top view with vertical axis being z and horizontal axis x = (img.col-w/2)*Z/focal; Here is img.col is image column, w - image width, and focal is camera focal length. Note that a camera frustum looks like a trapezoid in a birds eye view.
Is there a way to calculate the distance to specific object using stereo camera?
Is there an equation or something to get distance using disparity or angle?
NOTE: Everything described here can be found in the Learning OpenCV book in the chapters on camera calibration and stereo vision. You should read these chapters to get a better understanding of the steps below.
One approach that do not require you to measure all the camera intrinsics and extrinsics yourself is to use openCVs calibration functions. Camera intrinsics (lens distortion/skew etc) can be calculated with cv::calibrateCamera, while the extrinsics (relation between left and right camera) can be calculated with cv::stereoCalibrate. These functions take a number of points in pixel coordinates and tries to map them to real world object coordinates. CV has a neat way to get such points, print out a black-and-white chessboard and use the cv::findChessboardCorners/cv::cornerSubPix functions to extract them. Around 10-15 image pairs of chessboards should do.
The matrices calculated by the calibration functions can be saved to disc so you don't have to repeat this process every time you start your application. You get some neat matrices here that allow you to create a rectification map (cv::stereoRectify/cv::initUndistortRectifyMap) that can later be applied to your images using cv::remap. You also get a neat matrix called Q, which is a disparity-to-depth matrix.
The reason to rectify your images is that once the process is complete for a pair of images (assuming your calibration is correct), every pixel/object in one image can be found on the same row in the other image.
There are a few ways you can go from here, depending on what kind of features you are looking for in the image. One way is to use CVs stereo correspondence functions, such as Stereo Block Matching or Semi Global Block Matching. This will give you a disparity map for the entire image which can be transformed to 3D points using the Q matrix (cv::reprojectImageTo3D).
The downfall of this is that unless there is much texture information in the image, CV isn't really very good at building a dense disparity map (you will get gaps in it where it couldn't find the correct disparity for a given pixel), so another approach is to find the points you want to match yourself. Say you find the feature/object in x=40,y=110 in the left image and x=22 in the right image (since the images are rectified, they should have the same y-value). The disparity is calculated as d = 40 - 22 = 18.
Construct a cv::Point3f(x,y,d), in our case (40,110,18). Find other interesting points the same way, then send all of the points to cv::perspectiveTransform (with the Q matrix as the transformation matrix, essentially this function is cv::reprojectImageTo3D but for sparse disparity maps) and the output will be points in an XYZ-coordinate system with the left camera at the center.
I am still working on it, so I will not post entire source code yet. But I will give you a conceptual solution.
You will need the following data as input (for both cameras):
camera position
camera point of interest (point at which camera is looking)
camera resolution (horizontal and vertical)
camera field of view angles (horizontal and vertical)
You can measure the last one yourself, by placing the camera on a piece of paper and drawing two lines and measuring an angle between these lines.
Cameras do not have to be aligned in any way, you only need to be able to see your object in both cameras.
Now calculate a vector from each camera to your object. You have (X,Y) pixel coordinates of the object from each camera, and you need to calculate a vector (X,Y,Z). Note that in the simple case, where the object is seen right in the middle of the camera, the solution would simply be (camera.PointOfInterest - camera.Position).
Once you have both vectors pointing at your target, lines defined by these vectors should cross in one point in ideal world. In real world they would not because of small measurement errors and limited resolution of cameras. So use the link below to calculate the distance vector between two lines.
Distance between two lines
In that link: P0 is your first cam position, Q0 is your second cam position and u and v are vectors starting at camera position and pointing at your target.
You are not interested in the actual distance, they want to calculate. You need the vector Wc - we can assume that the object is in the middle of Wc. Once you have the position of your object in 3D space you also get whatever distance you like.
I will post the entire source code soon.
I have the source code for detecting human face and returns not only depth but also real world coordinates with left camera (or right camera, I couldn't remember) being origin. It is adapted from source code from "Learning OpenCV" and refer to some websites to get it working. The result is generally quite accurate.