K-NN: training MSE with K=1 not equal to 0 - machine-learning

In theory, the training MSE for k = 1 should be zero. However, the following script shows otherwise. I first generate some toy data: x represents sleeping hours and y represents happiness. Then I train the data and predict the outcome. Finally, I calculate the MSE for the training data via two methods. Can anyone tell me what goes wrong?
from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor(n_neighbors=1)
import numpy as np
x = np.array([7,8,6,7,5.7,6.8,8.6,6.5,7.8,5.7,9.8,7.7,8.8,6.2,7.1,5.7]).reshape(16,1)
y = np.array([5,7,4,5,6,9,7,6.8,8,7.6,9.3,8.2,7,6.2,3.8,6]).reshape(16,1)
model = model.fit(x,y)
for hours_slept in range(1,11):
happiness = model.predict([[hours_slept]])
print("if you sleep %.0f hours, you will be %.1f happy!" %(hours_slept, happiness))
# calculate MSE
# fast method
def model_mse(model,x,y):
predictions = model.predict(x)
return np.mean(np.power(y-predictions,2))
print(model_mse(model,x,y))
The output:
if you sleep 1 hours, you will be 6.0 happy!
if you sleep 2 hours, you will be 6.0 happy!
if you sleep 3 hours, you will be 6.0 happy!
if you sleep 4 hours, you will be 6.0 happy!
if you sleep 5 hours, you will be 6.0 happy!
if you sleep 6 hours, you will be 4.0 happy!
if you sleep 7 hours, you will be 5.0 happy!
if you sleep 8 hours, you will be 7.0 happy!
if you sleep 9 hours, you will be 7.0 happy!
if you sleep 10 hours, you will be 9.3 happy!
0.15999999999999992 #strictly larger than 0!

In your data, x has multiple labels for 5.7 in y, 6 and 7.6. After training, the algorithm assigns label 6 for the variable 5.7, and during evaluation, when it encounters 5.7 for the second time, it returns 6 but not 7.6. So, the squared error of this pair is (7.6 - 6)**2 = 2.56 and the mean squared error, considering other errors are 0, is 1/16 * 2.56 = 0.16 - exactly your result.

In theory, the training MSE for k = 1 should be zero
An implicit assumption here is that there are not duplicate samples x, or, to be precise, that same features x have same values y. Is it the case here? Let's see
pred = model.predict(x)
np.where(pred!=y)[0]
# array([9])
So, there is a single value where y and pred are indeed different:
y[9]
# array([7.6])
pred[9]
# array([6.])
where
x[9]
# array([5.7])
How many samples x have a value of 5.7, and what are the correspondent y's?
ind = np.where(x==5.7)[0]
ind
# array([ 4, 9, 15])
y[ind]
# result:
array([[6. ],
[7.6],
[6. ]])
pred[ind]
# result
array([[6.],
[6.],
[6.]])
So, what is actually happening here is that for x=5.7 the algorithm unsuprisingly cannot decide unambiguously which exact sample is the single closest neighbor - the one with y=6 or the one with y=7.6; and here it has chosen the one that does not coincide with the true y, leading to a non-zero MSE.
I guess that digging into the knn source code one would be able to justify exactly how such cases are handled internally, but I'm leaving this as an exercise.

Related

cost becoming NaN after certain iterations

I am trying to do a multiclass classification problem (containing 3 labels) with softmax regression.
This is my first rough implementation with gradient descent and back propagation (without using regularization and any advanced optimization algorithm) containing only 1 layer.
Also when learning-rate is big (>0.003) cost becomes NaN, on decreasing learning-rate the cost function works fine.
Can anyone explain what I'm doing wrong??
# X is (13,177) dimensional
# y is (3,177) dimensional with label 0/1
m = X.shape[1] # 177
W = np.random.randn(3,X.shape[0])*0.01 # (3,13)
b = 0
cost = 0
alpha = 0.0001 # seems too small to me but for bigger values cost becomes NaN
for i in range(100):
Z = np.dot(W,X) + b
t = np.exp(Z)
add = np.sum(t,axis=0)
A = t/add
loss = -np.multiply(y,np.log(A))
cost += np.sum(loss)/m
print('cost after iteration',i+1,'is',cost)
dZ = A-y
dW = np.dot(dZ,X.T)/m
db = np.sum(dZ)/m
W = W - alpha*dW
b = b - alpha*db
This is what I get :
cost after iteration 1 is 6.661713420377916
cost after iteration 2 is 23.58974203186562
cost after iteration 3 is 52.75811642877174
.............................................................
...............*upto 100 iterations*.................
.............................................................
cost after iteration 99 is 1413.555298639879
cost after iteration 100 is 1429.6533630169406
Well after some time i figured it out.
First of all the cost was increasing due to this :
cost += np.sum(loss)/m
Here plus sign is not needed as it will add all the previous cost computed on every epoch which is not what we want. This implementation is generally required during mini-batch gradient descent for computing cost over each epoch.
Secondly the learning rate is too big for this problem that's why cost was overshooting the minimum value and becoming NaN.
I looked in my code and find out that my features were of very different range (one was from -1 to 1 and other was -5000 to 5000) which was limiting my algorithm to use greater values for learning rate.
So I applied feature scaling :
var = np.var(X, axis=1)
X = X/var
Now learning rate can be much bigger (<=0.001).

vowpalwabbit strange features count

I have found that during training my model vw shows very big (much more than my features count ) feature number count in it's log.
I have tried to reproduce it using some small example:
simple.test:
-1 | 1 2 3
1 | 3 4 5
then "vw simple.test" command says that it have used 8 features. +one feature is constant but what are the other ? And in my real exmaple difference between my features and features used in wv is abot x10 more.
....
Num weight bits = 18
learning rate = 0.5
initial_t = 0
power_t = 0.5
using no cache
Reading datafile = t
num sources = 1
average since example example current current current
loss last counter weight label predict features
finished run
number of examples = 2
weighted example sum = 2
weighted label sum = 3
average loss = 1.9179
best constant = 1.5
total feature number = 8 !!!!
total feature number displays a sum of feature counts from all observed examples. So it's 2*(3+1 constant)=8 in your case. The number of features in current example is displayed in current features column. Note that only 2^Nth example is printed on screen by default. In general observations can have unequal number of features.

Learning Weka - Precision and Recall - Wiki example to .Arff file

I'm new to WEKA and advanced statistics, starting from scratch to understand the WEKA measures. I've done all the #rushdi-shams examples, which are great resources.
On Wikipedia the http://en.wikipedia.org/wiki/Precision_and_recall examples explains with an simple example about a video software recognition of 7 dogs detection in a group of 9 real dogs and some cats.
I perfectly understand the example, and the recall calculation.
So my first step, let see in Weka how to reproduce with this data.
How do I create such a .ARFF file?
With this file I have a wrong Confusion Matrix, and the wrong Accuracy By Class
Recall is not 1, it should be 4/9 (0.4444)
#relation 'dogs and cat detection'
#attribute 'realanimal' {dog,cat}
#attribute 'detected' {dog,cat}
#attribute 'class' {correct,wrong}
#data
dog,dog,correct
dog,dog,correct
dog,dog,correct
dog,dog,correct
cat,dog,wrong
cat,dog,wrong
cat,dog,wrong
dog,?,?
dog,?,?
dog,?,?
dog,?,?
dog,?,?
cat,?,?
cat,?,?
Output Weka (without filters)
=== Run information ===
Scheme:weka.classifiers.rules.ZeroR
Relation: dogs and cat detection
Instances: 14
Attributes: 3
realanimal
detected
class
Test mode:10-fold cross-validation
=== Classifier model (full training set) ===
ZeroR predicts class value: correct
Time taken to build model: 0 seconds
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances 4 57.1429 %
Incorrectly Classified Instances 3 42.8571 %
Kappa statistic 0
Mean absolute error 0.5
Root mean squared error 0.5044
Relative absolute error 100 %
Root relative squared error 100 %
Total Number of Instances 7
Ignored Class Unknown Instances 7
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
1 1 0.571 1 0.727 0.65 correct
0 0 0 0 0 0.136 wrong
Weighted Avg. 0.571 0.571 0.327 0.571 0.416 0.43
=== Confusion Matrix ===
a b <-- classified as
4 0 | a = correct
3 0 | b = wrong
There must be something wrong with the False Negative dogs,
or is my ARFF approach totally wrong and do I need another kind of attributes?
Thanks
Lets start with the basic definition of Precision and Recall.
Precision = TP/(TP+FP)
Recall = TP/(TP+FN)
Where TP is True Positive, FP is False Positive, and FN is False Negative.
In the above dog.arff file, Weka took into account only the first 7 tuples, it ignored the remaining 7. It can be seen from the above output that it has classified all the 7 tuples as correct(4 correct tuples + 3 wrong tuples).
Lets calculate the precision for correct and wrong class.
First for the correct class:
Prec = 4/(4+3) = 0.571428571
Recall = 4/(4+0) = 1.
For wrong class:
Prec = 0/(0+0)= 0
recall =0/(0+3) = 0

How to process % to negative number in Visual Foxpro

How to do % to negative number in VF?
MOD(10,-3) = -2
MOD(-10,3) = 2
MODE(-10,-3) = -1
Why?
It is a regular modulo:
The mod function is defined as the amount by which a number exceeds
the largest integer multiple of the divisor that is not greater than
that number.
You can think of it like this:
10 % -3:
The largest multiple of 10 that is less than -3 is -2.
So 10 % -3 is -2.
-10 % 3:
Now, why -10 % 3 is 2?
The easiest way to think about it is to add to the negative number a multiple of 2 so that the number becomes positive.
-10 + (4*3) = 2 so -10 % 3 = (-10 + 12) % 3 = 2 % 3 = 3
Here's what we said about this in The Hacker's Guide to Visual FoxPro:
MOD() and % are pretty straightforward when dealing with positive numbers, but they get interesting when one or both of the numbers is negative. The key to understanding the results is the following equation:
MOD(x,y) = x - (y * FLOOR(x/y))
Since the mathematical modulo operation isn't defined for negative numbers, it's a pleasure to see that the FoxPro definitions are mathematically consistent. However, they may be different from what you'd initially expect, so you may want to check for negative divisors or dividends.
A little testing (and the manuals) tells us that a positive divisor gives a positive result while a negative divisor gives a negative result.

Finding standard deviation using only mean, min, max?

I want to find the standard deviation:
Minimum = 5
Mean = 24
Maximum = 84
Overall score = 90
I just want to find out my grade by using the standard deviation
Thanks,
A standard deviation cannot in general be computed from just the min, max, and mean. This can be demonstrated with two sets of scores that have the same min, and max, and mean but different standard deviations:
1 2 4 5 : min=1 max=5 mean=3 stdev≈1.5811
1 3 3 5 : min=1 max=5 mean=3 stdev≈0.7071
Also, what does an 'overall score' of 90 mean if the maximum is 84?
I actually did a quick-and-dirty calculation of the type M Rad mentions. It involves assuming that the distribution is Gaussian or "normal." This does not apply to your situation but might help others asking the same question. (You can tell your distribution is not normal because the distance from mean to max and mean to min is not close). Even if it were normal, you would need something you don't mention: the number of samples (number of tests taken in your case).
Those readers who DO have a normal population can use the table below to give a rough estimate by dividing the difference of your measured minimum and your calculated mean by the expected value for your sample size. On average, it will be off by the given number of standard deviations. (I have no idea whether it is biased - change the code below and calculate the error without the abs to get a guess.)
Num Samples Expected distance Expected error
10 1.55 0.25
20 1.88 0.20
30 2.05 0.18
40 2.16 0.17
50 2.26 0.15
60 2.33 0.15
70 2.38 0.14
80 2.43 0.14
90 2.47 0.13
100 2.52 0.13
This experiment shows that the "rule of thumb" of dividing the range by 4 to get the standard deviation is in general incorrect -- even for normal populations. In my experiment it only holds for sample sizes between 20 and 40 (and then loosely). This rule may have been what the OP was thinking about.
You can modify the following python code to generate the table for different values (change max_sample_size) or more accuracy (change num_simulations) or get rid of the limitation to multiples of 10 (change the parameters to xrange in the for loop for idx)
#!/usr/bin/python
import random
# Return the distance of the minimum of samples from its mean
#
# Samples must have at least one entry
def min_dist_from_estd_mean(samples):
total = 0
sample_min = samples[0]
for sample in samples:
total += sample
sample_min = min(sample, sample_min)
estd_mean = total / len(samples)
return estd_mean - sample_min # Pos bec min cannot be greater than mean
num_simulations = 4095
max_sample_size = 100
# Calculate expected distances
sum_of_dists=[0]*(max_sample_size+1) # +1 so can index by sample size
for iternum in xrange(num_simulations):
samples=[random.normalvariate(0,1)]
while len(samples) <= max_sample_size:
sum_of_dists[len(samples)] += min_dist_from_estd_mean(samples)
samples.append(random.normalvariate(0,1))
expected_dist = [total/num_simulations for total in sum_of_dists]
# Calculate average error using that distance
sum_of_errors=[0]*len(sum_of_dists)
for iternum in xrange(num_simulations):
samples=[random.normalvariate(0,1)]
while len(samples) <= max_sample_size:
ave_dist = expected_dist[len(samples)]
if ave_dist > 0:
sum_of_errors[len(samples)] += \
abs(1 - (min_dist_from_estd_mean(samples)/ave_dist))
samples.append(random.normalvariate(0,1))
expected_error = [total/num_simulations for total in sum_of_errors]
cols=" {0:>15}{1:>20}{2:>20}"
print(cols.format("Num Samples","Expected distance","Expected error"))
cols=" {0:>15}{1:>20.2f}{2:>20.2f}"
for idx in xrange(10,len(expected_dist),10):
print(cols.format(idx, expected_dist[idx], expected_error[idx]))
Yo can obtain an estimate of the geometric mean, sometimes called the geometric mean of the extremes or GME, using the Min and the Max by calculating the GME= $\sqrt{ Min*Max }$. The SD can be then calculated using your arithmetic mean (AM) and the GME as:
SD= $$\frac{AM}{GME} * \sqrt{(AM)^2-(GME)^2 }$$
This approach works well for log-normal distributions or as long as the GME, GM or Median is smaller than the AM.
In principle you can make an estimate of standard deviation from the mean/min/max and the number of elements in the sample. The min and max of a sample are, if you assume normality, random variables whose statistics follow from mean/stddev/number of samples. So given the latter, one can compute (after slogging through the math or running a bunch of monte carlo scripts) a confidence interval for the former (like it is 80% probable that the stddev is between 20 and 40 or something like that).
That said, it probably isn't worth doing except in extreme situations.

Resources