Question on swift style extension in dart, is it achievable in dart? - dart

i am trying to do swift protocol style programming in dart because i think its clean. So the question is:
lets say i have a protocol where i must implement the methods in it, so in the class that i use the delegate, i will always have extension outside of the main class and put the delegate method inside, then next time i can even put the delegate methods in a different file, also it has good readability, for example:
// delegate method here
extension mainClass{
void delegateMethod(){}
}
then i try to do this in dart with extension, but there is an error at the home page class because it cannot find the mixin method :
class HomePage with delegateOne{
libraryexample.delegate = this;
}
extension delegateMethod on HomePage {
String getDescriptionForIndex(int index) {
// TODO: implement getDescriptionURLForIndex
return "description";
}
}
mixin delegateOne {
String getDescriptionForIndex(int index);
}

Extension methods are syntactic sugar; they don't actually add a method to instances of the class, and they therefore won't help if you need your class to conform to some interface.
I'm not familiar with "Swift protocol style programming", but typically in Dart, classes use implements to satisfy interfaces. For example:
abstract class delegateOne {
String getDescriptionForIndex(int index);
}
class HomePage implements delegateOne {
#override
String getDescriptionForIndex(int index) {
// TODO: implement getDescriptionURLForIndex
return "description";
}
}

Related

Why does subclassing UINavigationController work but extending it doesn't? [duplicate]

I tend to only put the necessities (stored properties, initializers) into my class definitions and move everything else into their own extension, kind of like an extension per logical block that I would group with // MARK: as well.
For a UIView subclass for example, I would end up with an extension for layout-related stuff, one for subscribing and handling events and so forth. In these extensions, I inevitably have to override some UIKit methods, e.g. layoutSubviews. I never noticed any issues with this approach -- until today.
Take this class hierarchy for example:
public class C: NSObject {
public func method() { print("C") }
}
public class B: C {
}
extension B {
override public func method() { print("B") }
}
public class A: B {
}
extension A {
override public func method() { print("A") }
}
(A() as A).method()
(A() as B).method()
(A() as C).method()
The output is A B C. That makes little sense to me. I read about Protocol Extensions being statically dispatched, but this ain't a protocol. This is a regular class, and I expect method calls to be dynamically dispatched at runtime. Clearly the call on C should at least be dynamically dispatched and produce C?
If I remove the inheritance from NSObject and make C a root class, the compiler complains saying declarations in extensions cannot override yet, which I read about already. But how does having NSObject as a root class change things?
Moving both overrides into their class declaration produces A A A as expected, moving only B's produces A B B, moving only A's produces C B C, the last of which makes absolutely no sense to me: not even the one statically typed to A produces the A-output any more!
Adding the dynamic keyword to the definition or an override does seem to give me the desired behavior 'from that point in the class hierarchy downwards'...
Let's change our example to something a little less constructed, what actually made me post this question:
public class B: UIView {
}
extension B {
override public func layoutSubviews() { print("B") }
}
public class A: B {
}
extension A {
override public func layoutSubviews() { print("A") }
}
(A() as A).layoutSubviews()
(A() as B).layoutSubviews()
(A() as UIView).layoutSubviews()
We now get A B A. Here I cannot make UIView's layoutSubviews dynamic by any means.
Moving both overrides into their class declaration gets us A A A again, only A's or only B's still gets us A B A. dynamic again solves my problems.
In theory I could add dynamic to all overrides I ever do but I feel like I'm doing something else wrong here.
Is it really wrong to use extensions for grouping code like I do?
Extensions cannot/should not override.
It is not possible to override functionality (like properties or methods) in extensions as documented in Apple's Swift Guide.
Extensions can add new functionality to a type, but they cannot override existing functionality.
Swift Developer Guide
The compiler is allowing you to override in the extension for compatibility with Objective-C. But it's actually violating the language directive.
😊That just reminded me of Isaac Asimov's "Three Laws of Robotics" 🤖
Extensions (syntactic sugar) define independent methods that receive their own arguments. The function that is called for i.e. layoutSubviews depends on the context the compiler knows about when the code is compiled. UIView inherits from UIResponder which inherits from NSObject so the override in the extension is permitted but should not be.
So there's nothing wrong with grouping but you should override in the class not in the extension.
Directive Notes
You can only override a superclass method i.e. load() initialize()in an extension of a subclass if the method is Objective-C compatible.
Therefore we can take a look at why it is allowing you to compile using layoutSubviews.
All Swift apps execute inside the Objective-C runtime except for when using pure Swift-only frameworks which allow for a Swift-only runtime.
As we found out the Objective-C runtime generally calls two class main methods load() and initialize() automatically when initializing classes in your app’s processes.
Regarding the dynamic modifier
From the Apple Developer Library (archive.org)
You can use the dynamic modifier to require that access to members be dynamically dispatched through the Objective-C runtime.
When Swift APIs are imported by the Objective-C runtime, there are no guarantees of dynamic dispatch for properties, methods, subscripts, or initializers. The Swift compiler may still devirtualize or inline member access to optimize the performance of your code, bypassing the Objective-C runtime. 😳
So dynamic can be applied to your layoutSubviews -> UIView Class since it’s represented by Objective-C and access to that member is always used using the Objective-C runtime.
That's why the compiler allowing you to use override and dynamic.
One of the goals of Swift is static dispatching, or rather the reduction of dynamic dispatching. Obj-C however is a very dynamic language. The situation you're seeing is borne out of the link between the 2 languages and the way they work together. It shouldn't really compile.
One of the main points about extensions is that they are for extending, not for replacing / overriding. It's clear from both the name and the documentation that this is the intention. Indeed if you take out the link to Obj-C from your code (remove NSObject as the superclass) it won't compile.
So, the compiler is trying to decide what it can statically dispatch and what it has to dynamically dispatch, and it's falling through a gap because of the Obj-C link in your code. The reason dynamic 'works' is because it's forcing Obj-C linking on everything so it's all always dynamic.
So, it isn't wrong to use extensions for grouping, that's great, but it is wrong to override in extensions. Any overrides should be in the main class itself, and call out to extension points.
There is a way to achieve a clean separation of class signature and implementation (in extensions) while maintaining the ability to have overrides in subclasses. The trick is to use variables in place of the functions
If you make sure to define each subclass in a separate swift source file, you can use computed variables for the overrides while keeping the corresponding implementation cleanly organized in extensions. This will circumvent Swift's "rules" and will make your class's API/signature neatly organized in one place:
// ---------- BaseClass.swift -------------
public class BaseClass
{
public var method1:(Int) -> String { return doMethod1 }
public init() {}
}
// the extension could also be in a separate file
extension BaseClass
{
private func doMethod1(param:Int) -> String { return "BaseClass \(param)" }
}
...
// ---------- ClassA.swift ----------
public class A:BaseClass
{
override public var method1:(Int) -> String { return doMethod1 }
}
// this extension can be in a separate file but not in the same
// file as the BaseClass extension that defines its doMethod1 implementation
extension A
{
private func doMethod1(param:Int) -> String
{
return "A \(param) added to \(super.method1(param))"
}
}
...
// ---------- ClassB.swift ----------
public class B:A
{
override public var method1:(Int) -> String { return doMethod1 }
}
extension B
{
private func doMethod1(param:Int) -> String
{
return "B \(param) added to \(super.method1(param))"
}
}
Each class's extension are able to use the same method names for the implementation because they are private and not visible to each other (as long as they are in separate files).
As you can see inheritance (using the variable name) works properly using super.variablename
BaseClass().method1(123) --> "BaseClass 123"
A().method1(123) --> "A 123 added to BaseClass 123"
B().method1(123) --> "B 123 added to A 123 added to BaseClass 123"
(B() as A).method1(123) --> "B 123 added to A 123 added to BaseClass 123"
(B() as BaseClass).method1(123) --> "B 123 added to A 123 added to BaseClass 123"
This answer it not aimed at the OP, other than the fact that I felt inspired to respond by his statement, "I tend to only put the necessities (stored properties, initializers) into my class definitions and move everything else into their own extension ...". I'm primarily a C# programmer, and in C# one can use partial classes for this purpose. For example, Visual Studio places the UI-related stuff in a separate source file using a partial class, and leaves your main source file uncluttered so you don't have that distraction.
If you search for "swift partial class" you'll find various links where Swift adherents say that Swift doesn't need partial classes because you can use extensions. Interestingly, if you type "swift extension" into the Google search field, its first search suggestion is "swift extension override", and at the moment this Stack Overflow question is the first hit. I take that to mean that problems with (lack of) override capabilities are the most searched-for topic related to Swift extensions, and highlights the fact that Swift extensions can't possibly replace partial classes, at least if you use derived classes in your programming.
Anyway, to cut a long-winded introduction short, I ran into this problem in a situation where I wanted to move some boilerplate / baggage methods out of the main source files for Swift classes that my C#-to-Swift program was generating. After running into the problem of no override allowed for these methods after moving them to extensions, I ended up implementing the following simple-minded workaround. The main Swift source files still contain some tiny stub methods that call the real methods in the extension files, and these extension methods are given unique names to avoid the override problem.
public protocol PCopierSerializable {
static func getFieldTable(mCopier : MCopier) -> FieldTable
static func createObject(initTable : [Int : Any?]) -> Any
func doSerialization(mCopier : MCopier)
}
.
public class SimpleClass : PCopierSerializable {
public var aMember : Int32
public init(
aMember : Int32
) {
self.aMember = aMember
}
public class func getFieldTable(mCopier : MCopier) -> FieldTable {
return getFieldTable_SimpleClass(mCopier: mCopier)
}
public class func createObject(initTable : [Int : Any?]) -> Any {
return createObject_SimpleClass(initTable: initTable)
}
public func doSerialization(mCopier : MCopier) {
doSerialization_SimpleClass(mCopier: mCopier)
}
}
.
extension SimpleClass {
class func getFieldTable_SimpleClass(mCopier : MCopier) -> FieldTable {
var fieldTable : FieldTable = [ : ]
fieldTable[376442881] = { () in try mCopier.getInt32A() } // aMember
return fieldTable
}
class func createObject_SimpleClass(initTable : [Int : Any?]) -> Any {
return SimpleClass(
aMember: initTable[376442881] as! Int32
)
}
func doSerialization_SimpleClass(mCopier : MCopier) {
mCopier.writeBinaryObjectHeader(367620, 1)
mCopier.serializeProperty(376442881, .eInt32, { () in mCopier.putInt32(aMember) } )
}
}
.
public class DerivedClass : SimpleClass {
public var aNewMember : Int32
public init(
aNewMember : Int32,
aMember : Int32
) {
self.aNewMember = aNewMember
super.init(
aMember: aMember
)
}
public class override func getFieldTable(mCopier : MCopier) -> FieldTable {
return getFieldTable_DerivedClass(mCopier: mCopier)
}
public class override func createObject(initTable : [Int : Any?]) -> Any {
return createObject_DerivedClass(initTable: initTable)
}
public override func doSerialization(mCopier : MCopier) {
doSerialization_DerivedClass(mCopier: mCopier)
}
}
.
extension DerivedClass {
class func getFieldTable_DerivedClass(mCopier : MCopier) -> FieldTable {
var fieldTable : FieldTable = [ : ]
fieldTable[376443905] = { () in try mCopier.getInt32A() } // aNewMember
fieldTable[376442881] = { () in try mCopier.getInt32A() } // aMember
return fieldTable
}
class func createObject_DerivedClass(initTable : [Int : Any?]) -> Any {
return DerivedClass(
aNewMember: initTable[376443905] as! Int32,
aMember: initTable[376442881] as! Int32
)
}
func doSerialization_DerivedClass(mCopier : MCopier) {
mCopier.writeBinaryObjectHeader(367621, 2)
mCopier.serializeProperty(376443905, .eInt32, { () in mCopier.putInt32(aNewMember) } )
mCopier.serializeProperty(376442881, .eInt32, { () in mCopier.putInt32(aMember) } )
}
}
Like I said in my introduction, this doesn't really answer the OP's question, but I'm hoping this simple-minded workaround might be helpful to others who wish to move methods from the main source files to extension files and run into the no-override problem.
Use POP (Protocol-Oriented Programming) to override functions in extensions.
protocol AProtocol {
func aFunction()
}
extension AProtocol {
func aFunction() {
print("empty")
}
}
class AClass: AProtocol {
}
extension AClass {
func aFunction() {
print("not empty")
}
}
let cls = AClass()
cls.aFunction()
Just wanted to add that for Objective-C classes, two separate categories can end up overwriting the same method, and it this case... well... unexpected things can happen.
The Objective-C runtime doesn't make any guarantees about which extension will be used, as described by Apple here:
If the name of a method declared in a category is the same as a method in the original class, or a method in another category on the same class (or even a superclass), the behavior is undefined as to which method implementation is used at runtime. This is less likely to be an issue if you’re using categories with your own classes, but can cause problems when using categories to add methods to standard Cocoa or Cocoa Touch classes.
It's a good thing Swift prohibits this for pure Swift classes, since this kind of overly-dynamic behaviour is a potential source of hard to detect and investigate bugs.

Swift: Store Type of implementation of Protocol in static var of protocol extension

Okay so I have this protocol MenuEntry which I want to use to populate a TableView:
protocol MenuEntry {
static var title: String { get }
static func entrySelected(_ menuController: MenuController)
}
I want to implement this protocol in various places and let the item itself decide what to do. It might be a UIViewController which implements the protocol or a simple struct, which then calls a function on the menu itself:
struct SomeEntry: MenuEntry {
static var title: String { return "Some Entry" }
static func entrySelected(_ menuController: MenuController) {
menuController.doSomething()
}
}
Now I want to build the MenuControllers datasource but without actually instantiating the entries because especially my view controllers are not necessarily available when the MenuControllers datasource is populated. Thats why I use static var/func in MenuEntry. Currently, I can simply do this to populate the datasource:
let dataSource: [MenuEntry.Type] = [SomeEntry.self]
And it seems to work pretty well. I can get the entries and call the corresponding functions:
dataSource.first?.title //Gives me "Some Entry"
Now comes the tricky part. I thought I could be really clever and create a protocol extension where I reference all the types in which I implement the protocol like so:
extension MenuEntry {
static var someEntry: MenuEntry.Type { return SomeEntry.self }
//...
}
And then later use them via MenuEntry.someEntry. However, accessing someEntry on MenuEntry gives me an error:
error: static member 'someEntry' cannot be used on protocol metatype 'MenuEntry.Protocol'
So my question is: what am I missing? Am I just trying to misuse the language in a way which is not intended or am I just doing something wrong?
SOLUTION
From the accepted answer below, heres how I now do things. First, we need the mentioned struct (no need for a class I guess):
struct MenuEntries {}
Then, where ever I implement the MenuEntry protocol, I also extend this struct and add the entry like so:
struct SomeEntry: MenuEntry {
static var title: String { return "Some Entry" }
static func entrySelected(_ menuController: MenuController) {
menuController.doSomething()
}
}
extension MenuEntries {
static var someEntry: MenuEntry.Type { return SomeEntry.self }
}
The last thing is to create my datasource like so:
let dataSource: [MenuEntry.Type] = [MenuEntries.someEntry, ...]
Okay, now I have a list of all menu entries in one place. The downside is I have to remember to extend MenuEntries every time. Except there is some magical way to extend a struct on a conditional base I'm not aware of. But I guess thats just over the top and simply not possible.
From The Swift Book
A protocol defines a blueprint of methods, properties, and other requirements that suit a particular task or piece of functionality. The protocol can then be adopted by a class, structure, or enumeration to provide an actual implementation of those requirements.”
Your extension is attempting to implement functionality directly in the protocol, but this is not allowed; Only a class, structure or enumeration adopting the protocol can provide functionality.
You could define a class that returns your menu classes:
class MenuFactory {
static var someEntry: MenuEntry.type { return SomeEntry.self }
}

How to create Singleton in swift with arguments

I learn the Swift Language and i need to create a manager like a Parse sdk.
For exemple when you initialize your Parse in app you write
Parse.setApplication("...", applicationId:"...")
And later you can write code like this
Parse.doSomething()
The method doSomething() use initial context.
Can you show me in my class should look like? I try some singleton exemple, but a have MyClass.sharedAttribute.doSomething() in case
What you have shown is no indication of singletons whatsoever, it sounds and looks more like a static class with static members and properties:
class MyStatic {
static var appIdA : String?
class func setApplicationId(a : String) {
appIdA = a
}
class func doSomething() {
print(appIdA)
}
}
MyStatic.setApplicationId("blabla")
MyStatic.doSomething() // prints Optional("blabla")
Of course there is the possibility that internally the class is a singleton, but Parse does not seem to be one, just looking at the functions it exposes.
The code comments even state
/*!
The `Parse` class contains static functions that handle global configuration
for the Parse framework.
*/

Swift Declare Class Func in Protocol

I had following confusion. As far as I know the main difference between static and class keywords when declaring method is that the second one could be overridden in subclasses.
The problem
However when I declare a protocol in Swift 1.2 like this:
protocol MyProtocol
{
class func dummyClassMethod()
}
compiler gives an error:
Class methods are only allowed within classes; use 'static' to declare
a static method
The error is pretty descriptive as obviously MyProtocol is not a class, however I want to make a class func part of the protocol.
What I've tried
I've found that if I declare interface in protocol as static, compiler is happy and I could use this static method in all classes that adopt this protocol:
protocol MyProtocol
{
static func dummyClassMethod()
}
The question
So my question basically is is this right? This declaration states that my class method cannot be overridden in children, however in my implementation I could write and use the following:
class ClassA: MyProtocol
{
class func dummyClassMethod() {
}
}
class ClassB: ClassA
{
override class func dummyClassMethod() {
}
}
and now my dummyClassMethod is not static anymore...
Compiler is Ok and everything works - but why?
Is it specific to the fact that interface itself is static, however
it's implementation is not?
Is there a better alternative for class func in protocols?
Objective-C solution
In ObjC this is pretty easy and compile & run flawlessly:
#protocol MyProtocol
+(void)dummyClassMethod;
#end
You can review Apple's Documentation (subsection Method Requirements).
There says:
As with type property requirements, you always prefix type method requirements with the static keyword when they are defined in a protocol. This is true even though type method requirements are prefixed with the class or static keyword when implemented by a class
In practice, You can do it as follow:
First, declare your protocol:
protocol SomeProtocol {
static func someMethod()
}
Then, in your class you've 2 options:
First:
class SomeClass : SomeProtocol {
class func someMethod()
}
Second:
class SomeClass : SomeProtocol {
static func someMethod()
}
I hope, this may clarify your doubt..
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html
A protocol defines a blueprint of methods, properties, and other
requirements that suit a particular task or piece of functionality.
The protocol doesn’t actually provide an implementation for any of
these requirements—it only describes what an implementation will look
like. The protocol can then be adopted by a class, structure, or
enumeration to provide an actual implementation of those requirements.
After this protocol definition it becomes reasonable that
As with type property requirements, you always prefix type method
requirements with the static keyword when they are defined in a
protocol. This is true even though type method requirements are
prefixed with the class or static keyword when implemented by a class...
To make protocol method static and final implement that method with static keyword
class ClassA: MyProtocol{
static func dummyClassMethod() {
}
}
and now you cant override dummyClassMethod function anymore. If you want to prevent overriding only you must declare protocol method as final. About class functions, they were not fully supported in Swift 1.0 and now in Swift 1.2 I think that they are moving towards static functions

Override var conforming to a protocol with a var conforming to a child of the overridden var protocol

This is my inheritance structure
Protocols
protocol BaseProtocol {
}
protocol ChildProtocol: BaseProtocol {
}
Classes
class BaseClass: NSObject {
var myVar: BaseProtocol!
}
class ChildClass: BaseClass {
override var myVar: ChildProtocol!
}
I'm receiving a compiler error:
Property 'myVar' with type 'ChildProtocol!' cannot override a property with type 'BaseProtocol!'
What is the best approach to achieve this?
UPDATE
I updated the question trying to implement the solution with generics but it does not work :( This is my code (now the real one, without examples)
Protocols
protocol TPLPileInteractorOutput {
}
protocol TPLAddInteractorOutput: TPLPileInteractorOutput {
func errorReceived(error: String)
}
Classes
class TPLPileInteractor<T: TPLPileInteractorOutput>: NSObject, TPLPileInteractorInput {
var output: T!
}
And my children
class TPLAddInteractor<T: TPLAddInteractorOutput>: TPLPileInteractor<TPLPileInteractorOutput>, TPLAddInteractorInput {
}
Well, inside my TPLAddInteractor I can't access self.output, it throws a compiler error, for example
'TPLPileInteractorOutput' does not have a member named 'errorReceived'
Besides that, when I create the instance of TPLAddInteractor
let addInteractor: TPLAddInteractor<TPLAddInteractorOutput> = TPLAddInteractor()
I receive this other error
Generic parameter 'T' cannot be bound to non-#objc protocol type 'TPLAddInteractorOutput'
Any thoughts?
#tskulbru is correct: it can't be done, and this has nothing to do with your protocols. Consider the example below, which also fails…this time with Cannot override with a stored property 'myVar':
class Foo {
}
class Goo: Foo {
}
class BaseClass: NSObject {
var myVar: Foo!
}
class ChildClass: BaseClass {
override var myVar: Foo!
}
To understand why, let's reexamine the docs:
Overriding Properties
You can override an inherited instance or class property to provide
your own custom getter and setter for that property, or to add
property observers to enable the overriding property to observe when
the underlying property value changes.
The implication is that if you are going to override a property, you must write your own getter/setter, or else you must add property observers. Simply replacing one variable type with another is not allowed.
Now for some rampant speculation: why is this the case? Well, consider on the one hand that Swift is intended to be optimized for speed. Having to do runtime type checks in order to determine whether your var is in fact a Foo or a Bar slows things down. Then consider that the language designers likely have a preference for composition over inheritance. If both of these are true, it's not surprising that you cannot override a property's type.
All that said, if you needed to get an equivalent behavior, #tskulbru's solution looks quite elegant, assuming you can get it to compile. :)
I don't think you can do that with protocols
The way i would solve the problem you are having is with the use of generics. This means that you essentially have the classes like this (Updated to a working example).
Protocols
protocol BaseProtocol {
func didSomething()
}
protocol ChildProtocol: BaseProtocol {
func didSomethingElse()
}
Classes
class BaseClass<T: BaseProtocol> {
var myProtocol: T?
func doCallBack() {
myProtocol?.didSomething()
}
}
class ChildClass<T: ChildProtocol> : BaseClass<T> {
override func doCallBack() {
super.doCallBack()
myProtocol?.didSomethingElse()
}
}
Implementation/Example use
class DoesSomethingClass : ChildProtocol {
func doSomething() {
var s = ChildClass<DoesSomethingClass>()
s.myProtocol = self
s.doCallBack()
}
func didSomething() {
println("doSomething()")
}
func didSomethingElse() {
println("doSomethingElse()")
}
}
let foo = DoesSomethingClass()
foo.doSomething()
Remember, you need a class which actually implements the protocol, and its THAT class you actually define as the generic type to the BaseClass/ChildClass. Since the code expects the type to be a type which conforms to the protocol.
There are two ways you can go with your code, depending what you want to achieve with your code (you didn't tell us).
The simple case: you just want to be able to assign an object that confirms to ChildProtocol to myVar.
Solution: don't override myVar. Just use it in ChildClass. You can do this by design of the language Swift. It is one of the basics of object oriented languages.
Second case: you not only want to enable assigning instances of ChildProtocol, you also want to disable to be able to assign instances of BaseProtocol.
If you want to do this, use the Generics solution, provided here in the answers section.
If you are unsure, the simple case is correct for you.
Gerd

Resources