Is it possible to define a function with an all quantified assertion in z3 (with SMT-LIB2 interface)? - z3

My goal is to define a function, which takes an input integer sequence and outputs an integer sequence with the same length, but containing only the first element of the input sequence. For example (in pseudo-code):
f([7,5,6]) = [7,7,7]
For this I declare a function in z3 as:
(declare-fun f ((Seq Int)) (Seq Int))
and try to force the expected behavior with the assertion:
(assert
(forall ((arr (Seq Int)))
(and
(=
(seq.len arr)
(seq.len (f arr))
)
(forall ((i Int))
(implies
(and
(>= i 0)
(< i (seq.len arr))
)
(=
(seq.at arr 0)
(seq.at (f arr) i)
)
)
)
)
))
The problem is that the program does not terminate, which I suspect is caused by the all-quantifier. To test whether my conditions are correct I declared two constants and saw that for concrete values the conditions are correct:
(define-const first (Seq Int)
(seq.++ (seq.unit 1) (seq.unit 2))
)
(declare-const second (Seq Int))
(assert
(and
(=
(seq.len first)
(seq.len second)
)
(forall ((i Int))
(implies
(and
(>= i 0)
(< i (seq.len first))
)
(=
(seq.at first 0)
(seq.at second i)
)
)
)
)
)
(check-sat)
(get-model)
My question: How would it be possible to integrate the conditions in the assertions with the expected behavior of the f function? The function should be total, which means it should be defined for all possible input sequences, but this leads me to think that an all quantifier is definitely needed in my case.

Reasoning with such recursive data-types/values is not a strong suit for SMT solvers. Most problems will require induction and SMT-solvers don't do induction out-of-the box.
Having said that, you can code what you want using the new declare-fun-rec construct:
(define-fun-rec copyHeadAux ((x (Seq Int)) (l (Seq Int))) (Seq Int)
(ite (= 0 (seq.len l))
(as seq.empty (Seq Int))
(seq.++ x (copyHeadAux x (seq.extract l 1 (seq.len l))))))
(define-fun copyHead ((l (Seq Int))) (Seq Int)
(ite (= 0 (seq.len l))
(as seq.empty (Seq Int))
(copyHeadAux (seq.at l 0) l)))
(define-fun test () (Seq Int) (seq.++ (seq.unit 7) (seq.unit 5) (seq.unit 6)))
(declare-const out (Seq Int))
(assert (= out (copyHead test)))
(check-sat)
(get-model)
When I run this, I get:
sat
(
(define-fun out () (Seq Int)
(seq.++ (seq.unit 7) (seq.unit 7) (seq.unit 7)))
(define-fun test () (Seq Int)
(seq.++ (seq.unit 7) (seq.unit 5) (seq.unit 6)))
(define-fun copyHead ((x!0 (Seq Int))) (Seq Int)
(ite (= 0 (seq.len x!0))
(as seq.empty (Seq Int))
(copyHeadAux (seq.at x!0 0) x!0)))
)
which is the correct answer you're looking for. But unless your constraints only involve "constant-folding" cases (i.e., where copyHead is always applied to a constant known value), you're likely to get unknown as the answer, or have the solver go into an infinite e-matching loop.
It's best to use a proper theorem prover (Isabelle, HOL, Lean, ACL2 etc.) for reasoning with these sorts of recursive definitions. Of course, SMT solvers get better over time and maybe one day they'll be able to handle more problems like this out-of-the-box, but I wouldn't hold my breath.

Related

Z3 Checking whether all values in array are unique

So I'm trying to check whether all values in an array is unique with the following Z3 code.
(declare-const A (Array Int Int))
(declare-const n Int)
(assert (forall ((i Int) (j Int)) (and (and (and (>= i 0) (< i n)) (and (>= j 0) (< j n)))
(implies (= (select A i) (select A j)) (= i j)))))
(check-sat)
I'm quite new to Z3 so I don't quite understand the grammar and stuff, but can anyone tell me whether this code is right, and if not, where's the problem?
The problem as you wrote is unsat, because it says whenever 0 <= i < n and 0 <= j < n, if A[i] = A[j], then i = j. There is no array and a particular n you can pick to satisfy this constraint.
What you really want to write is the following instead:
(declare-const A (Array Int Int))
(declare-const n Int)
(assert (forall ((i Int) (j Int)) (implies (and (>= i 0) (< i n)
(>= j 0) (< j n)
(= (select A i) (select A j)))
(= i j))))
(check-sat)
(get-model)
The above says If it's the case that i and j are within bounds, and array elements are the same, then i must equal j. And this variant would be satisifiable for any n; and indeed here's what z3 reports:
sat
(
(define-fun n () Int
0)
(define-fun A () (Array Int Int)
((as const (Array Int Int)) 0))
)
But note that z3 simply picked n = 0, which made it easy to satisfy the formula. Let's make sure we get a more interesting model, by adding:
(assert (> n 2))
Now we get:
sat
(
(define-fun n () Int
3)
(define-fun A () (Array Int Int)
(lambda ((x!1 Int))
(let ((a!1 (ite (and (<= 1 x!1) (not (<= 2 x!1))) 7 8)))
(ite (<= 1 x!1) (ite (and (<= 1 x!1) (<= 2 x!1)) 6 a!1) 5))))
)
and we see that z3 picked the array to have 3 elements with distinct values at positions we care about.
Note that this sort of reasoning with quantifiers is a soft-spot for SMT solvers; while z3 is able to find models for these cases, if you keep adding quantified axioms you'll likely get unknown as the answer, or z3 (or any other SMT solver for that matter) will take longer and longer time to respond.

Quantifier patterns in Z3

I am having trouble attempting to prove this fairly simple Z3 query.
(set-option :smt.auto-config false) ; disable automatic self configuration
(set-option :smt.mbqi false) ; disable model-based quantifier instantiation
(declare-fun sum (Int) Int)
(declare-fun list () (Array Int Int))
(declare-fun i0 () Int)
(declare-fun s0 () Int)
(declare-fun i1 () Int)
(declare-fun s1 () Int)
(assert (forall ((n Int))
(! (or (not (<= n 0)) (= (sum n) 0))
:pattern ((sum n)))))
(assert (forall ((n Int))
(! (let ((a1 (= (sum n)
(+ (select list (- n 1))
(sum (- n 1))))))
(or (<= n 0) a1))
:pattern ((sum n)))))
(assert (>= i0 0))
(assert (= s0 (sum i0)))
(assert (= i1 (+ 1 i0)))
(assert (= s1 (+ 1 s0 (select list i0))))
(assert (not (= s1 (sum i1))))
(check-sat)
Seems to me that the final assertion should instantiate the second quantified statement for i1 while the assert involving s0 should instantiate the quantifiers for i0. These two should should easily lead to UNSAT.
However, Z3 returns unknown. What am I missing?
Never mind, there was an silly error in my query.
This code:
(assert (= s1 (+ 1 s0 (select list i0))))
should have been:
(assert (= s1 (+ s0 (select list i0))))

Guiding z3's proof search

I'm trying to get z3 to work (most of the time) for very simple non-linear integer arithmetic problems. Unfortunately, I've hit a bit of a wall with exponentiation. I want to be able handle problems like x^{a+b+2} = (x * x * x^{a} * x{b}). I only need to handle non-negative exponents.
I tried redefining exponentiation as a recursive function (so that it's just allowed to return 1 for any non-positive exponent) and using a pattern to facilitate z3 inferring that x^{a+b} = x^{a} * x^{b}, but it doesn't seem to work - I'm still timing out.
(define-fun-rec pow ((x!1 Int) (x!2 Int)) Int
(if (<= x!2 0) 1 (* x!1 (pow x!1 (- x!2 1)))))
; split +
(assert (forall ((a Int) (b Int) (c Int))
(! (=>
(and (>= b 0) (>= c 0))
(= (pow a (+ b c)) (* (pow a c) (pow a b))))
:pattern ((pow a (+ b c))))))
; small cases
(assert (forall ((a Int)) (= 1 (pow a 0))))
(assert (forall ((a Int)) (= a (pow a 1))))
(assert (forall ((a Int)) (= (* a a) (pow a 2))))
(assert (forall ((a Int)) (= (* a a a) (pow a 3))))
; Our problem
(declare-const x Int)
(declare-const i Int)
(assert (>= i 0))
; This should be provably unsat, by splitting and the small case for 2
(assert (not (= (* (* x x) (pow x i)) (pow x (+ i 2)))))
(check-sat) ;times out
Am I using patterns incorrectly, is there a way to give stronger hints to the proof search, or an easier way to do achieve what I want?
Pattern (also called triggers) may only contain uninterpreted functions. Since + is an interpreted function, you essentially provide an invalid pattern, in which case virtually anything can happen.
As a first step, I disabled Z3's auto-configuration feature and also MBQI-based quantifier instantiation:
(set-option :auto_config false)
(set-option :smt.mbqi false)
Next, I introduced an uninterpreted plus function and replaced each application of + by plus. That sufficed to make your assertion verify (i.e. yield unsat). You can of course also axiomatise plus in terms of +, i.e.
(declare-fun plus (Int Int) Int)
(assert (forall ((a Int) (b Int))
(! (= (plus a b) (+ a b))
:pattern ((plus a b)))))
but your assertion already verifies without the definitional axioms for plus.

How do you extract an element as the base type from a Seq type in Z3?

How do I extract an element in a Sequence to the base type, so that the following will work?
(define-sort ISeq () (Seq Int))
(define-const x ISeq (seq.unit 5))
(define-const y ISeq (seq.unit 6))
(assert (>= (seq.at x 0) (seq.at y 0)))
Until a suitable function is implemented (or its existence is revealed to us), you could use the following work-around:
(define-sort ISeq () (Seq Int))
(define-const x ISeq (seq.unit 5))
(define-const y ISeq (seq.unit 6))
(declare-const e1 Int)
(declare-const e2 Int)
(push)
(assert (= (seq.unit e1) (seq.at x 0)))
(assert (= (seq.unit e2) (seq.at y 0)))
(assert (not (>= e2 e1)))
(check-sat)
(pop)
(push) ;; or alternatively
(assert (not
(implies
(and
(= (seq.unit e1) (seq.at x 0))
(= (seq.unit e2) (seq.at y 0)))
(>= e2 e1))))
(check-sat)
(pop)
See the relevant discussion at the Z3 issue tracker: https://github.com/Z3Prover/z3/issues/1302
It seems a workaround is indeed possible, but due to quantifiers it's unlikely to give you an effective method. An explicit encoding like Malte suggests might be the most practical approach here in the meantime.
You're looking for nth. Here is a simple example of it:
(define-sort ISeq () (Seq Int))
(declare-const x ISeq)
(declare-const y ISeq)
(assert (= (seq.len x) 4))
(assert (= (seq.len y) 3))
(assert (< (seq.nth x 3) (seq.nth y 1)))
(check-sat)
(get-value (x y))
And z3 answers immediately with a correct answer (1237 > 1236):
sat
((x (seq.++ (seq.unit 6)
(seq.++ (seq.unit 7) (seq.++ (seq.unit 8) (seq.unit 1236)))))
(y (seq.++ (seq.unit 9) (seq.++ (seq.unit 1237) (seq.unit 12)))))

Defining injective functions in Z3

My goal is to define an injective function f: Int -> Term, where Term is some new sort. Having referred to the definition of the injective function, I wrote the following:
(declare-sort Term)
(declare-fun f (Int) Term)
(assert (forall ((x Int) (y Int))
(=> (= (f x) (f y)) (= x y))))
(check-sat)
This causes a timeout. I suspect that this is because the solver tries to validate the assertion for all values in the Int domain, which is infinite.
I also checked that the model described above works for some custom sort instead of Int:
(declare-sort Term)
(declare-sort A)
(declare-fun f (A) Term)
(assert (forall ((x A) (y A))
(=> (= (f x) (f y)) (= x y))))
(declare-const x A)
(declare-const y A)
(assert (and (not (= x y)) (= (f x) (f y))))
(check-sat)
(get-model)
The first question is how to implement the same model for Int sort instead of A. Can solver do this?
I also found the injective function example in the tutorial in multi-patterns section. I don't quite get why :pattern annotation is helpful. So the second question is why :pattern is used and what does it brings to this example particularly.
I am trying this
(declare-sort Term)
(declare-const x Int)
(declare-const y Int)
(declare-fun f (Int) Term)
(define-fun biyect () Bool
(=> (= (f x) (f y)) (= x y)))
(assert (not biyect))
(check-sat)
(get-model)
and I am obtaining this
sat
(model
;; universe for Term:
;; Term!val!0
;; -----------
;; definitions for universe elements:
(declare-fun Term!val!0 () Term)
;; cardinality constraint:
(forall ((x Term)) (= x Term!val !0))
;; -----------
(define-fun y () Int
1)
(define-fun x () Int
0)
(define-fun f ((x!1 Int)) Term
(ite (= x!1 0) Term!val!0
(ite (= x!1 1) Term!val!0
Term!val!0)))
)
What do you think about this
(declare-sort Term)
(declare-fun f (Int) Term)
(define-fun biyect () Bool
(forall ((x Int) (y Int))
(=> (= (f x) (f y)) (= x y))))
(assert (not biyect))
(check-sat)
(get-model)
and the output is
sat
(model
;; universe for Term:
;; Term!val!0
;; -----------
;; definitions for universe elements:
(declare-fun Term!val!0 () Term)
;; cardinality constraint:
(forall ((x Term)) (= x Term!val!0))
;; -----------
(define-fun x!1 () Int 0)
(define-fun y!0 () Int 1)
(define-fun f ((x!1 Int)) Term
(ite (= x!1 0) Term!val!0
(ite (= x!1 1) Term!val!0
Term!val!0)))
)

Resources