Apache Beam: read from UnboundedSource with fixed windows - stream

I have an UnboundedSource that generates N items (it's not in batch mode, it's a stream -- one that only generates a certain amount of items and then stops emitting new items but a stream nonetheless). Then I apply a certain PTransform to the collection I'm getting from that source. I also apply the Window.into(FixedWindows.of(...)) transform and then group the results by window using Combine. So it's kind of like this:
pipeline.apply(Read.from(new SomeUnboundedSource(...)) // extends UnboundedSource
.apply(Window.into(FixedWindows.of(Duration.millis(5000))))
.apply(new SomeTransform())
.apply(Combine.globally(new SomeCombineFn()).withoutDefaults())
And I assumed that would mean new events are generated for 5 seconds, then SomeTransform is applied to the data in the 5 seconds window, then a new set of data is polled and therefore generated. Instead all N events are generated first, and only after that is SomeTransform applied to the data (but the windowing works as expected). Is it supposed to work like this? Does Beam and/or the runner (I'm using the Flink runner but the Direct runner seems to exhibit the same behavior) have some sort of queue where it stores items before passing it on to the next operator? Does that depend on what kind of UnboundedSource is used? In my case it's a generator of sorts. Is there a way to achieve the behavior that I expected or is it unreasonable? I am very new to working with streaming pipelines in general, let alone Beam. I assume, however, it would be somewhat illogical to try to read everything from the source first, seeing as it's, you know, unbounded.

An important thing to note is that windows in Beam operate on event time, not processing time. Adding 5 second windows to your data is not a way to prescribe how the data should be processed, only the end result of aggregations for that processing. Further, windows only affect the data once an aggregation is reached, like your Combine.globally. Until that point in your pipeline the windowing you applied has no effect.
As to whether it is supposed to work that way, the beam model doesn't specify any specific processing behavior so other runners may process elements slightly differently. However, this is still a correct implementation. It isn't trying to read everything from the source; generally streaming sources in Beam will attempt to read all elements available before moving on and coming back to the source later. If you were to adjust your stream to stream in elements slowly over a long period of time you will likely see more processing in between reading from the source.

Related

Beam CoGroupByKey with fixed window and event time based trigger generates random elements

I have a pipeline in Beam that uses CoGroupByKey to combine 2 PCollections, first one reads from a Pub/Sub subscription and the second one uses the same PCollection, but enriches the data by looking up additional information from a table, using JdbcIO.readAll. So there is no way there would be data in the second PCollection without it being there in the first one.
There is a fixed window of 10seconds with an event based trigger like below;
Repeatedly.forever(
AfterWatermark.pastEndOfWindow().withEarlyFirings(
AfterProcessingTime.pastFirstElementInPane().plusDelayOf(Duration.standardSeconds(40))
).withLateFirings(AfterPane.elementCountAtLeast(1))
);
The issue I am seeing is that when I stop the pipeline using the Drain mode, it seems to be randomly generating elements for the second PCollection when there has not been any messages coming in to the input Pub/Sub topic. This also happens randomly when the pipeline is running as well, but not consistent, but when draining the pipeline I have been able to consistently reproduce this.
Please find the variation in input vs output below;
You are using a non-deterministic triggering, which means the output is sensitive to the exact ordering in which events come in. Another way to look at this is that CoGBK does not wait for both sides to come in; the trigger starts ticking as soon as either side comes in.
For example, lets call your PCollections A and A' respectively, and assume they each have two elements a1, a2, a1', and a2' (of common provenance).
Suppose a1 and a1' come into the CoGBK, 39 seconds passes, and then a2 comes in (on the same key), another 2 seconds pass, then a2' comes in. The CoGBK will output ([a1, a2], [a1']) when the 40-second mark hits, and then when the window closes ([], [a2']) will get emitted. (Even if everything is on the same key, this could happen occasionally if there is more than a 40-second walltime delay going through the longer path, and will almost certainly happen for any late data (each side will fire separately).
Draining makes things worse, e.g. I think all processing time triggers fire immediately.

Stream de-duplication on Dataflow | Running services on Dataflow services

I want to de-dupe a stream of data based on an ID in a windowed fashion. The stream we receive has and we want to remove data with matching within N-hour time windows. A straight-forward approach is to use an external key-store (BigTable or something similar) where we look-up for keys and write if required but our qps is extremely large making maintaining such a service pretty hard. The alternative approach I came up with was to groupBy within a timewindow so that all data for a user within a time-window falls within the same group and then, in each group, we use a separate key-store service where we look up for duplicates by the key. So, I have a few questions about this approach
[1] If I run a groupBy transform, is there any guarantee that each group will be processed in the same slave? If guaranteed, we can group by the userid and then within each group compare the sessionid for each user
[2] If it is feasible, my next question is to whether we can run such other services in each of the slave machines that run the job - in the example above, I would like to have a local Redis running which can then be used by each group to look up or write an ID too.
The idea seems off what Dataflow is supposed to do but I believe such use cases should be common - so if there is a better model to approach this problem, I am looking forward to that too. We essentially want to avoid external lookups as much as possible given the amount of data we have.
1) In the Dataflow model, there is no guarantee that the same machine will see all the groups across windows for the key. Imagine that a VM dies or new VMs are added and work is split across them for scaling.
2) Your welcome to run other services on the Dataflow VMs since they are general purpose but note that you will have to contend with resource requirements of the other applications on the host potentially causing out of memory issues.
Note that you may want to take a look at RemoveDuplicates and use that if it fits your usecase.
It also seems like you might want to be using session windows to dedupe elements. You would call:
PCollection<T> pc = ...;
PCollection<T> windowed_pc = pc.apply(
Window<T>into(Sessions.withGapDuration(Duration.standardMinutes(N hours))));
Each new element will keep extending the length of the window so it won't close until the gap closes. If you also apply an AfterCount speculative trigger of 1 with an AfterWatermark trigger on a downstream GroupByKey. The trigger would fire as soon as it could which would be once it has seen at least one element and then once more when the session closes. After the GroupByKey you would have a DoFn that filters out an element which isn't an early firing based upon the pane information ([3], [4]).
DoFn(T -> KV<session key, T>)
|
\|/
Window.into(Session window)
|
\|/
Group by key
|
\|/
DoFn(Filter based upon pane information)
It is sort of unclear from your description, can you provide more details?
Sorry for not being clear. I gave the setup you mentioned a try, except for the early and late firings part, and it is working on smaller samples. I have a couple of follow up questions, related to scaling this up. Also, I was hoping I could give you more information on what the exact scenario is.
So, we have incoming data stream, each item of which can be uniquely identified by their fields. We also know that duplicates occur pretty far apart and for now, we care about those within a 6 hour window. And regarding the volume of data, we have atleast 100K events every second, which span across a million different users - so within this 6 hour window, we could get a few billion events into the pipeline.
Given this background, my questions are
[1] For the sessioning to happen by key, I should run it on something like
PCollection<KV<key, T>> windowed_pc = pc.apply(
Window<KV<key,T>>into(Sessions.withGapDuration(Duration.standardMinutes(6 hours))));
where key is a combination of the 3 ids I had mentioned earlier. Based on the definition of Sessions, only if I run it on this KV would I be able to manage sessions per-key. This would mean that Dataflow would have too many open sessions at any given time waiting for them to close and I was worried if it would scale or I would run into any bottle-necks.
[2] Once I perform Sessioning as above, I have already removed the duplicates based on the firings since I will only care about the first firing in each session which already destroys duplicates. I no longer need the RemoveDuplicates transform which I found was a combination of (WithKeys, Combine.PerKey, Values) transforms in order, essentially performing the same operation. Is this the right assumption to make?
[3] If the solution in [1] going to be a problem, the alternative is to reduce the key for sessioning to be just user-id, session-id ignoring the sequence-id and then, running a RemoveDuplicates on top of each resulting window by sequence-id. This might reduce the number of open sessions but still would leave a lot of open sessions (#users * #sessions per user) which can easily run into millions. FWIW, I dont think we can session only by user-id since then the session might never close as different sessions for same user could keep coming in and also determining the session gap in this scenario becomes infeasible.
Hope my problem is a little more clear this time. Please let me know any of my approaches make the best use of Dataflow or if I am missing something.
Thanks
I tried out this solution at a larger scale and as long as I provide sufficient workers and disks, the pipeline scales well although I am seeing a different problem now.
After this sessionization, I run a Combine.perKey on the key and then perform a ParDo which looks into c.pane().getTiming() and only rejects anything other than an EARLY firing. I tried counting both EARLY and ONTIME firings in this ParDo and it looks like the ontime-panes are actually deduped more precisely than the early ones. I mean, the #early-firings still has some duplicates whereas the #ontime-firings is less than that and has more duplicates removed. Is there any reason this could happen? Also, is my approach towards deduping using a Combine+ParDo the right one or could I do something better?
events.apply(
WithKeys.<String, EventInfo>of(new SerializableFunction<EventInfo, String>() {
#Override
public java.lang.String apply(EventInfo input) {
return input.getUniqueKey();
}
})
)
.apply(
Window.named("sessioner").<KV<String, EventInfo>>into(
Sessions.withGapDuration(mSessionGap)
)
.triggering(
AfterWatermark.pastEndOfWindow()
.withEarlyFirings(AfterPane.elementCountAtLeast(1))
)
.withAllowedLateness(Duration.ZERO)
.accumulatingFiredPanes()
);

Real-time pipeline feedback loop

I have a dataset with potentially corrupted/malicious data. The data is timestamped. I'm rating the data with a heuristic function. After a period of time I know that all new data items coming with some IDs needs to be discarded and they represent a significant portion of data (up to 40%).
Right now I have two batch pipelines:
First one just runs the rating over the data.
The second one first filters out the corrupted data and runs the analysis.
I would like to switch from batch mode (say, running every day) into an online processing mode (hope to get a delay < 10 minutes).
The second pipeline uses a global window which makes processing easy. When the corrupted data key is detected, all other records are simply discarded (also using the discarded keys from previous days as a pre-filter is easy). Additionally it makes it easier to make decisions about the output data as during the processing all historic data for a given key is available.
The main question is: can I create a loop in a Dataflow DAG? Let's say I would like to accumulate quality-rates given to each session window I process and if the rate sum is over X, some a filter function in earlier stage of pipeline should filter out malicious keys.
I know about side input, I don't know if it can change during runtime.
I'm aware that DAG by definition cannot have cycle, but how achieve same result without it?
Idea that comes to my mind is to use side output to mark ID as malicious and make fake unbounded output/input. The output would dump the data to some storage and the input would load it every hour and stream so it can be joined.
Side inputs in the Beam programming model are windowed.
So you were on the right path: it seems reasonable to have a pipeline structured as two parts: 1) computing a detection model for the malicious data, and 2) taking the model as a side input and the data as a main input, and filtering the data according to the model. This second part of the pipeline will get the model for the matching window, which seems to be exactly what you want.
In fact, this is one of the main examples in the Millwheel paper (page 2), upon which Dataflow's streaming runner is based.

Total aggregate over an unbounded stream in Dataflow

A number of examples show aggregation over windows of an unbounded stream, but suppose we need to get a count-per-key of the entire stream seen up to some point in time. (Think word count that emits totals for everything seen so far rather than totals for each window.)
It seems like this could be a Combine.perKey and a trigger to emit panes at some interval. In this case the window is essentially global, and we emit panes for that same window throughout the life of the job. Is this safe/reasonable, or perhaps there is another way to compute a rolling, total aggregate?
Ryan your solution of using a global window and a periodic trigger is the recommended approach. Just make sure you use accumulation mode on the trigger and not discarding mode. The Triggers page should have more information.
Let us know if you need additional help.

How can I emit summary data for each window even if a given window was empty?

It is really important for my application to always emit a "window finished" message, even if the window was empty. I cannot figure out how to do this. My initial idea was to output an int for each record processed and use Sum.integersGlobally and then emit a record based off that, giving me a singleton per window, I could then simply emit one summary record per window, with 0 if the window was empty. Of course, this fails, and you have to use withoutDefaults which will then emit nothing if the window was empty.
Cloud Dataflow is built around the notion of processing data that is likely to be highly sparse. By design, it does not conjure up data to fill in those gaps of sparseness, since this will be cost prohibitive for many cases. For a use case like yours where non-sparsity is practical (creating non-sparse results for a single global key), the workaround is to join your main PCollection with a heartbeat PCollection consisting of empty values. So for the example of Sum.integersGlobally, you would Flatten your main PCollection<Integer> with a secondary PCollection<Integer> that contains exactly one value of zero per window. This assumes you're using an enumerable type of window (e.g. FixedWindows or SlidingWindows; Sessions are by definition non-enumerable).
Currently, the only way to do this would be to write a data generator program that injects the necessary stream of zeroes into Pub/Sub with timestamps appropriate for the type of windows you will be using. If you write to the same Pub/Sub topic as your main input, you won't even need to add a Flatten to your code. The downside is that you have to run this as a separate job somewhere.
In the future (once our Custom Source API is available), we should be able to provide a PSource that accepts an enumerable WindowFn plus a default value and generates an appropriate unbounded PCollection.

Resources