The reason behind rgb image normalization parameters in pytorch - image-processing

I've seen transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) both in lots of tutorials and pytorch docs, I know the first param is mean and the second one is std. I can't understand why the values for different channels differ.

That can just be the distribution of the colours in the original dataset of the code authors (such as COCO or PascalVOC). It would only be through chance that all colours are equally represented. However, if you used the same mean in your case, I doubt it would make much of a difference due to the similarity of the means and stds.
For example, in my custom dataset taken from a GoPro camera, the means and standard deviations are as such:
mean: [0.2841186 , 0.32399923, 0.27048702],
std: [0.21937862, 0.26193094, 0.23754872]
where the means are hardly equal. This does not mean, however, that they are treated differently in the ML model. All this transform does is make sure that each feature is standardised (through z-score standardisation).
Think about it this way: if one colour is represented with a generally-higher intensity in your dataset (eg. if you have lots of vibrant "blue" pictures of the beach, the sky, lagoons, etc), than you will have to subtract a larger number from that channel to ensure that your data is standardised.

Related

Linear Regression :: Normalization (Vs) Standardization

I am using Linear regression to predict data. But, I am getting totally contrasting results when I Normalize (Vs) Standardize variables.
Normalization = x -xmin/ xmax – xmin
 
Zero Score Standardization = x - xmean/ xstd
 
a) Also, when to Normalize (Vs) Standardize ?
b) How Normalization affects Linear Regression?
c) Is it okay if I don't normalize all the attributes/lables in the linear regression?
Thanks,
Santosh
Note that the results might not necessarily be so different. You might simply need different hyperparameters for the two options to give similar results.
The ideal thing is to test what works best for your problem. If you can't afford this for some reason, most algorithms will probably benefit from standardization more so than from normalization.
See here for some examples of when one should be preferred over the other:
For example, in clustering analyses, standardization may be especially crucial in order to compare similarities between features based on certain distance measures. Another prominent example is the Principal Component Analysis, where we usually prefer standardization over Min-Max scaling, since we are interested in the components that maximize the variance (depending on the question and if the PCA computes the components via the correlation matrix instead of the covariance matrix; but more about PCA in my previous article).
However, this doesn’t mean that Min-Max scaling is not useful at all! A popular application is image processing, where pixel intensities have to be normalized to fit within a certain range (i.e., 0 to 255 for the RGB color range). Also, typical neural network algorithm require data that on a 0-1 scale.
One disadvantage of normalization over standardization is that it loses some information in the data, especially about outliers.
Also on the linked page, there is this picture:
As you can see, scaling clusters all the data very close together, which may not be what you want. It might cause algorithms such as gradient descent to take longer to converge to the same solution they would on a standardized data set, or it might even make it impossible.
"Normalizing variables" doesn't really make sense. The correct terminology is "normalizing / scaling the features". If you're going to normalize or scale one feature, you should do the same for the rest.
That makes sense because normalization and standardization do different things.
Normalization transforms your data into a range between 0 and 1
Standardization transforms your data such that the resulting distribution has a mean of 0 and a standard deviation of 1
Normalization/standardization are designed to achieve a similar goal, which is to create features that have similar ranges to each other. We want that so we can be sure we are capturing the true information in a feature, and that we dont over weigh a particular feature just because its values are much larger than other features.
If all of your features are within a similar range of each other then theres no real need to standardize/normalize. If, however, some features naturally take on values that are much larger/smaller than others then normalization/standardization is called for
If you're going to be normalizing at least one variable/feature, I would do the same thing to all of the others as well
First question is why we need Normalisation/Standardisation?
=> We take a example of dataset where we have salary variable and age variable.
Age can take range from 0 to 90 where salary can be from 25thousand to 2.5lakh.
We compare difference for 2 person then age difference will be in range of below 100 where salary difference will in range of thousands.
So if we don't want one variable to dominate other then we use either Normalisation or Standardization. Now both age and salary will be in same scale
but when we use standardiztion or normalisation, we lose original values and it is transformed to some values. So loss of interpretation but extremely important when we want to draw inference from our data.
Normalization rescales the values into a range of [0,1]. also called min-max scaled.
Standardization rescales data to have a mean (μ) of 0 and standard deviation (σ) of 1.So it gives a normal graph.
Example below:
Another example:
In above image, you can see that our actual data(in green) is spread b/w 1 to 6, standardised data(in red) is spread around -1 to 3 whereas normalised data(in blue) is spread around 0 to 1.
Normally many algorithm required you to first standardise/normalise data before passing as parameter. Like in PCA, where we do dimension reduction by plotting our 3D data into 1D(say).Here we required standardisation.
But in Image processing, it is required to normalise pixels before processing.
But during normalisation, we lose outliers(extreme datapoints-either too low or too high) which is slight disadvantage.
So it depends on our preference what we chose but standardisation is most recommended as it gives a normal curve.
None of the mentioned transformations shall matter for linear regression as these are all affine transformations.
Found coefficients would change but explained variance will ultimately remain the same. So, from linear regression perspective, Outliers remain as outliers (leverage points).
And these transformations also will not change the distribution. Shape of the distribution remains the same.
lot of people use Normalisation and Standardisation interchangeably. The purpose remains the same is to bring features into the same scale. The approach is to subtract each value from min value or mean and divide by max value minus min value or SD respectively. The difference you can observe that when using min value u will get all value + ve and mean value u will get bot + ve and -ve values. This is also one of the factors to decide which approach to use.

Interpreting a Self Organizing Map

I have been doing reading about Self Organizing Maps, and I understand the Algorithm(I think), however something still eludes me.
How do you interpret the trained network?
How would you then actually use it for say, a classification task(once you have done the clustering with your training data)?
All of the material I seem to find(printed and digital) focuses on the training of the Algorithm. I believe I may be missing something crucial.
Regards
SOMs are mainly a dimensionality reduction algorithm, not a classification tool. They are used for the dimensionality reduction just like PCA and similar methods (as once trained, you can check which neuron is activated by your input and use this neuron's position as the value), the only actual difference is their ability to preserve a given topology of output representation.
So what is SOM actually producing is a mapping from your input space X to the reduced space Y (the most common is a 2d lattice, making Y a 2 dimensional space). To perform actual classification you should transform your data through this mapping, and run some other, classificational model (SVM, Neural Network, Decision Tree, etc.).
In other words - SOMs are used for finding other representation of the data. Representation, which is easy for further analyzis by humans (as it is mostly 2dimensional and can be plotted), and very easy for any further classification models. This is a great method of visualizing highly dimensional data, analyzing "what is going on", how are some classes grouped geometricaly, etc.. But they should not be confused with other neural models like artificial neural networks or even growing neural gas (which is a very similar concept, yet giving a direct data clustering) as they serve a different purpose.
Of course one can use SOMs directly for the classification, but this is a modification of the original idea, which requires other data representation, and in general, it does not work that well as using some other classifier on top of it.
EDIT
There are at least few ways of visualizing the trained SOM:
one can render the SOM's neurons as points in the input space, with edges connecting the topologicaly close ones (this is possible only if the input space has small number of dimensions, like 2-3)
display data classes on the SOM's topology - if your data is labeled with some numbers {1,..k}, we can bind some k colors to them, for binary case let us consider blue and red. Next, for each data point we calculate its corresponding neuron in the SOM and add this label's color to the neuron. Once all data have been processed, we plot the SOM's neurons, each with its original position in the topology, with the color being some agregate (eg. mean) of colors assigned to it. This approach, if we use some simple topology like 2d grid, gives us a nice low-dimensional representation of data. In the following image, subimages from the third one to the end are the results of such visualization, where red color means label 1("yes" answer) andbluemeans label2` ("no" answer)
onc can also visualize the inter-neuron distances by calculating how far away are each connected neurons and plotting it on the SOM's map (second subimage in the above visualization)
one can cluster the neuron's positions with some clustering algorithm (like K-means) and visualize the clusters ids as colors (first subimage)

Histogram Normalization Features

I am confused how I extract features using histogram normalization. Maybe this sounds too silly but sorry about been silly I am just confused. I have normalized the image but how i represent it as a feature. Is it the histogram becomes the feature or is it the concept of HOG (histogram of Oriented Gradient). I am confused how I represent histogram as a features. Can I get some explanation on this please.
A feature descriptor may be defined as any property of a pattern that describes it in part or in full. When you extract the histogram of an image, you're extracting a few properties of the image that may be applied or exploited in various ways. For example, if you have a majority of the histogram population biased towards the darker side, you can conclude that the image is either filled with dark patterns or is not illuminated sufficiently. So the histogram itself is an effective feature descriptor.
To make histograms comparable, normalisation is usually necessary. For example, you may want to compare images of different sizes. In this case, the overall population of the histograms will be different for the two images. But once you normalise the histograms, they become comparable, which in turn makes the feature description effective and usable.

How do I make a U-matrix?

How exactly is an U-matrix constructed in order to visualise a self-organizing-map? More specifically, suppose that I have an output grid of 3x3 nodes (that have already been trained), how do I construct a U-matrix from this? You can e.g. assume that the neurons (and inputs) have dimension 4.
I have found several resources on the web, but they are not clear or they are contradictory. For example, the original paper is full of typos.
A U-matrix is a visual representation of the distances between neurons in the input data dimension space. Namely you calculate the distance between adjacent neurons, using their trained vector. If your input dimension was 4, then each neuron in the trained map also corresponds to a 4-dimensional vector. Let's say you have a 3x3 hexagonal map.
The U-matrix will be a 5x5 matrix with interpolated elements for each connection between two neurons like this
The {x,y} elements are the distance between neuron x and y, and the values in {x} elements are the mean of the surrounding values. For example, {4,5} = distance(4,5) and {4} = mean({1,4}, {2,4}, {4,5}, {4,7}). For the calculation of the distance you use the trained 4-dimensional vector of each neuron and the distance formula that you used for the training of the map (usually Euclidian distance). So, the values of the U-matrix are only numbers (not vectors). Then you can assign a light gray colour to the largest of these values and a dark gray to the smallest and the other values to corresponding shades of gray. You can use these colours to paint the cells of the U-matrix and have a visualized representation of the distances between neurons.
Have also a look at this web article.
The original paper cited in the question states:
A naive application of Kohonen's algorithm, although preserving the topology of the input data is not able to show clusters inherent in the input data.
Firstly, that's true, secondly, it is a deep mis-understanding of the SOM, thirdly it is also a mis-understanding of the purpose of calculating the SOM.
Just take the RGB color space as an example: are there 3 colors (RGB), or 6 (RGBCMY), or 8 (+BW), or more? How would you define that independent of the purpose, ie inherent in the data itself?
My recommendation would be not to use maximum likelihood estimators of cluster boundaries at all - not even such primitive ones as the U-Matrix -, because the underlying argument is already flawed. No matter which method you then use to determine the cluster, you would inherit that flaw. More precisely, the determination of cluster boundaries is not interesting at all, and it is loosing information regarding the true intention of building a SOM. So, why do we build SOM's from data?
Let us start with some basics:
Any SOM is a representative model of a data space, for it reduces the dimensionality of the latter. For it is a model it can be used as a diagnostic as well as a predictive tool. Yet, both cases are not justified by some universal objectivity. Instead, models are deeply dependent on the purpose and the accepted associated risk for errors.
Let us assume for a moment the U-Matrix (or similar) would be reasonable. So we determine some clusters on the map. It is not only an issue how to justify the criterion for it (outside of the purpose itself), it is also problematic because any further calculation destroys some information (it is a model about a model).
The only interesting thing on a SOM is the accuracy itself viz the classification error, not some estimation of it. Thus, the estimation of the model in terms of validation and robustness is the only thing that is interesting.
Any prediction has a purpose and the acceptance of the prediction is a function of the accuracy, which in turn can be expressed by the classification error. Note that the classification error can be determined for 2-class models as well as for multi-class models. If you don't have a purpose, you should not do anything with your data.
Inversely, the concept of "number of clusters" is completely dependent on the criterion "allowed divergence within clusters", so it is masking the most important thing of the structure of the data. It is also dependent on the risk and the risk structure (in terms of type I/II errors) you are willing to take.
So, how could we determine the number classes on a SOM? If there is no exterior apriori reasoning available, the only feasible way would be an a-posteriori check of the goodness-of-fit. On a given SOM, impose different numbers of classes and measure the deviations in terms of mis-classification cost, then choose (subjectively) the most pleasing one (using some fancy heuristics, like Occam's razor)
Taken together, the U-matrix is pretending objectivity where no objectivity can be. It is a serious misunderstanding of modeling altogether.
IMHO it is one of the greatest advantages of the SOM that all the parameters implied by it are accessible and open for being parameterized. Approaches like the U-matrix destroy just that, by disregarding this transparency and closing it again with opaque statistical reasoning.

Ways to improve Image Pixel Classification

Here is the problem we are trying to solve:
Goal is to classify pixels of a colored image into 3 different classes.
We have a set of manually classified data for training purposes
Pixels almost do not correlate to each other (each have individual behaviour) - so most likely classification is on each individual pixel and based on it's individual features.
3 classes approximately can be mapped to colors of RED, YELLOW and BLACK color families.
We need to have the system semi-automatic, i.e. 3 parameters to control the probability of the presence of 3 outcomes (for final well-tuning)
Having this in mind:
Which classification technique will you choose?
What pixel features will you use for classification (RGB, Ycc, HSV, etc) ?
What modification functions will you choose for well-tuning between three outcomes.
My first try was based on
Naive bayes classifier
HSV (also tried RGB and Ycc)
(failed to find a proper functions for well-tuning)
Any suggestion?
Thanks
For each pixel in the image try using the histogram of colors the n x n window around that pixel as its features. For general-purpose color matching under varied lighting conditions, I have had good luck with using two-dimensional histograms of hue and saturation with a relatively small number of bins along each dimension. Depending upon your lighting consistency it might make sense for you to directly use the RGB values.
As for the classifier, the manual-tuning requirement is most easily expressed using class weights: parameters that specify the relative costs of false negatives versus false positives. I have only used this functionality with SVMs, but I'm sure you can find implementations of other classifiers that support a similar concept.

Resources