I'm trying to add floating-point operations to my .bzl file. According to the Bazel globals specification, the float() function should be defined, as per the Starlark specification. However, when I try to add float(), I get the following error,
ERROR: /home/username/code/project/foo.bzl:4:3: name 'float' is not defined
Is there anything else I have to import? I assume that since the float() keyword is defined in the global namespace I wouldn't need to import it. According to the starlark spec page on the Bazel site page, floats are not supported, but this directly conflicts with the float() specification on the global page.
update: running Bazel 3.7.1
If you build Bazel from master it does already support float. I added Bazel from master to my system via the alias potato. Bazel 3.7.2 (and earlier) does not support the float type. I guess we won't see any float support in 3.7.x.
If you need floating point math for Bazel 3.7.2 and earlier you have to implement floating-point math using integer tricks. See for instance here.
Maybe you can achieve your goal without requiring float as shown here or by falling back to a "normal" Python script.
BTW: In the documentation, you can switch to the current used Bazel version - which will give you 404 for float and Bazel 3.7.2 and earlier. Only for master, there is documentation available.
A version of Bazel supporting floating point numbers has not been released yet. Presumably, the version after 4.0 will support them.
Related
I have a little Java program. I build a binary using Graal's native-image (i.e. GraalVM AOT aka SubstrateVM).
My program can be executed either with a Java runtime or from the native-image binary. What's the best way to tell which context I'm running in?
(This might be a bad practice in general but I believe it's inevitable/necessary in certain not-uncommon circumstances.)
Edit: There is now an API for that. See user7983712's answer.
The way it's done in the GraalVM is by capturing the com.oracle.graalvm.isaot system property: it is set to true while building AOT images. If you combine that with the fact that static initializers run during image generation, you can use
static final boolean IS_AOT = Boolean.getBoolean("com.oracle.graalvm.isaot")
This boolean will remain true when running the native image.
This is also useful to cut-off paths that you don't want in the final output: for example if you have some code that uses a feature that SVM doesn't support (e.g., dynamic class-loading) you can predicate it with !IS_AOT.
GraalVM now provides an API for checking the AOT context:
ImageInfo.inImageCode()
ImageInfo.inImageRuntimeCode()
ImageInfo.inImageBuildtimeCode()
ImageInfo.isExecutable()
ImageInfo.isSharedLibrary()
I'm leaning towards checking the presence/absence of some system properties. When I print out the system properties under Graal AOT I see:
{os.arch=x86_64, file.encoding=UTF-8, user.home=/Users/thom, path.separator=:, os.name=Mac OS X, user.dir=/Users/thom, line.separator=
, sun.jnu.encoding=UTF-8, file.separator=/, java.io.tmpdir=/var/folders/0x/rms5rjn526x33rm394xwmr8c0000gn/T/, user.name=thom}
As you may notice it's fairly short and is missing all the usual java.* ones such as java.class.path. I'll omit listing the lengthy Java version and instead link to another SO listing the usual Java System properties:
What is the full list of standard keys recognized by the Java System.getProperty() method?
So one way to do it would seem to be to check whether one or more of the java.* properties are absent.
AFAIK there are no plans to set these in SubstrateVM. But System properties are mutable so one could possibly choose to fake them.
But anyway here's a way to do it:
def isGraalAOT = System.properties.getProperty("java.class.path") == null
I need to add headers to an already existing program by transforming it with LLVM and Clang.
I have used clang's rewriter to accomplish a similar thing in the changing function names and arguments, etc.
But the header files aren't present in clang's AST. I already know we need to use PPCallbacks (https://clang.llvm.org/doxygen/classclang_1_1PPCallbacks.html) but I am in dire need of some examples on how to make it work with the rewriter if at all possible.
Alternatively, adding a #include statement just before the first
using namespace <namespace>;
Also works. I would like to know an example of this as well.
Any help would be appreciated.
There is a bit of confusion in your question. You need to understand in details how the preprocessor works. Be aware that most of C++ compilation happens after the preprocessing phase (so most C++ static analyzers work after that phase).
In other words, the C++ specification (and also the C specification) defines first what is preprocessing, and then what is the syntax and the semantics of the preprocessed form.
In other words, when compiling foo.cc your compiler see the preprocessed form foo.ii that you could obtain with clang++ -C -E foo.cc > foo.ii
In the 1980s the preprocessor /lib/cpp was a separate program forked by the compiler (and some temporary foo.ii was sitting on the disk and removed at end of compilation). Today, it is -for performance reasons- some initial processing done inside the compiler. But you could reason as if it was still separate.
Either you want to alter the Clang compiler, and it deals (like every other C++ compiler or C++ static analyzer) mostly with the preprocessed form. Then you don't want to add new #include-s, but you want to alter the flow of AST given to the compiler (after preprocessing), and that is a different question: you then want to add some AST between existing AST elements (independently of any preprocessor directives).
Or you want to automatically change the C++ source code. The hard part is determining what you want to change and at what place. I suppose that you have used complex stuff to determine that a #include <vector> has to be inserted after line 34 of file foo.cc. Once you've got that information (and getting it is the hard thing), doing the insertion is pretty trivial. For example, you could read every C++ source line, and insert your line when you have read enough lines.
In the documentation it says, 'source' can be either str or AST object
When trying to compile my ast root:
dl = compile(newRoot, '<string>', 'eval')
I get this Exception:
expected str, got Module
I am using the last version of IronPython.
Is there an idea why this does not work? all the examples I found seem to do it this way with no issues.
Is there a workaround to compile an AST object?
Thanks!!!!
PD: I found this issue but seems to have no activity: http://ironpython.codeplex.com/workitem/32526
First off, IronPython does not support this.
It's actually quite hard to support in IronPython (and I didn't know it needed to be supported until today). IronPython's _ast module is a wrapper around its own AST, and currently only implements conversion from IronPython AST => CPython AST, but not the reverse. It's a fair bit of (honestly, quite tedious) work, so I'm not sure when it will get fixed.
If there's a popular program or library that's broken because of this that moves it up the priority list, and patches are always welcome.
I was trying to:
#define CommonAppData {commonappdata}
but it yields:
Compiler Error
[ISPP] Expression expected but opening brace ("{") found.
How to achieve this with Inno Setup PreProcessor?
{commonappdata} cannot be expanded at compile time, i.e. when the pre-processor runs because it is only known at runtime: It identifies the common application data directory on the machine where the compiled installer is run.
Maybe if you could clarify how you intend to use that define we might be able to help. If for example what you're really interested in is not the common app data directory on the target machine but the one on the developer machine, then you can probably use this:
#define CommonAppData GetEnv("COMMONAPPDATA")
If however you intend to use that define for populating Inno properties that are themselves capable of expanding the constant at runtime then you should use this:
#define CommonAppData "{commonappdata}"
Hope this helps.
#define is a inno setup pre-processor directive, in a pre-compile phase. It works much like a C pre-processor.
By defining a pre-processor variable, we force the compiler to see a script after the ispp defines are resolved:
Inno Setup Preprocessor (ISPP) is an add-on for Jordan Russell's Inno Setup compiler. More technically speaking, it is an additional layer between GUI (your Inno Setup script) and the compiler, which before passing the text intercepts and modifies it in a way it is told by using special directives in the script text.
That said, I can't find a source in documentation nor have time to digg into the source code, but I'm pretty sure inno setup variables are not available during this pre-compile time.
If you just want the defined variable to contain the string {commonappdata}, use it directly in your source... if you want the defined variable to have the run-time value of commonappdata, it doesn't seem possible to me, because that value is determined at runtime as its current value depends on the target machine (windows version, language, etc.).
If you think it twice, it doesn't make sense to try to use that value at pre-compile or compile time... this is just the whole fact that brings inno setup constants like {commonappdata}, {destdir} and the like to existence... that you can express in a standard way at compile time a unknown but meaningful value, which will be known and evaluated at runtime.
You'll probably need to escape the brace. Something like:
#define CommonAppData {{commonappdata}
I'm using a closed-source application that loads Lua scripts and allows some customization through modifying these scripts. Unfortunately that application is not very good at generating useful log output (all I get is 'script failed') if something goes wrong in one of the Lua scripts.
I realize that dynamic languages are pretty much resistant to static code analysis in the way C++ code can be analyzed for example.
I was hoping though, there would be a tool that runs through a Lua script and e.g. warns about variables that have not been defined in the context of a particular script.
Essentially what I'm looking for is a tool that for a script:
local a
print b
would output:
warning: script.lua(1): local 'a' is not used'
warning: script.lua(2): 'b' may not be defined'
It can only really be warnings for most things but that would still be useful! Does such a tool exist? Or maybe a Lua IDE with a feature like that build in?
Thanks, Chris
Automated static code analysis for Lua is not an easy task in general. However, for a limited set of practical problems it is quite doable.
Quick googling for "lua lint" yields these two tools: lua-checker and Lua lint.
You may want to roll your own tool for your specific needs however.
Metalua is one of the most powerful tools for static Lua code analysis. For example, please see metalint, the tool for global variable usage analysis.
Please do not hesitate to post your question on Metalua mailing list. People there are usually very helpful.
There is also lua-inspect, which is based on metalua that was already mentioned. I've integrated it into ZeroBrane Studio IDE, which generates an output very similar to what you'd expect. See this SO answer for details: https://stackoverflow.com/a/11789348/1442917.
For checking globals, see this lua-l posting. Checking locals is harder.
You need to find a parser for lua (should be available as open source) and use it to parse the script into a proper AST tree. Use that tree and a simple variable visibility tracker to find out when a variable is or isn't defined.
Usually the scoping rules are simple:
start with the top AST node and an empty scope
item look at the child statements for that node. Every variable declaration should be added in the current scope.
if a new scope is starting (for example via a { operator) create a new variable scope inheriting the variables in the current scope).
when a scope is ending (for example via } ) remove the current child variable scope and return to the parent.
Iterate carefully.
This will provide you with what variables are visible where inside the AST. You can use this information and if you also inspect the expressions AST nodes (read/write of variables) you can find out your information.
I just started using luacheck and it is excellent!
The first release was from 2015.