I'm using CalibratedClassifierCV to calibrate the probabilities of my CNN model. I'm using the following code:
from tensorflow.keras.models import load_model
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from sklearn.calibration import CalibratedClassifierCV
def load_model(*args, **kwargs):
path="my_model.hd5"
model = load_model(path)
return model
clf = KerasClassifier(build_fn=load_model)
calib = CalibratedClassifierCV(clf, cv='prefit', method='sigmoid')
calib.fit(X_train, y_train)
When using this code I'm getting the error message AttributeError: 'KerasClassifier' object has no attribute 'model'. Also when I use clf.predict(X_test) I'm getting the same error. So something seems to be wrong with KerasClassifier.
Is there a mistake in my code?
You redefined keras' load_model function (from tensorflow.keras.models import load_model) with a namesake (def load_model(*args, **kwargs)) - that may be the problem.
Related
I tried running my Machine Learning LinearRegression code, but it is not working. Here is the code:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import pandas as pd
df = pd.read_csv(r'C:\Users\SVISHWANATH\Downloads\datasets\GGP_data.csv')
df["OHLC"] = (df.open+df.high+df.low+df.close)/4
df['HLC'] = (df.high+df.low+df.close)/3
df.index = df.index+1
reg = LinearRegression()
reg.fit(df.index, df.OHLC)
Basically, I just imported a few libraries, used the read_csv function, and called the LinearRegression() function, and this is the error:
ValueError: Expected 2D array, got 1D array instead:
array=[ 1 2 3 ... 1257 1258 1259].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or
array.reshape(1, -1) if it contains a single sample
Thanks!
As mentioned in the error message, you need to give the fit method a 2D array.
df.index is a 1D array. You can do it this way:
reg.fit(df.index.values.reshape(-1, 1), df.OHLC)
I'm using Jena Climate Data that my book gives a link to. I have it below;
https://s3.amazonaws.com/keras-datasets/jena_climate_2009_2016.csv.zip
I tried messing with it but I have no clue why the index is surpassing 200000. I'm not sure why it gets to 200005 since my training data is 200001 observations long.
I've also gotten an error that said, " Index 200000 is out of bounds for axis 0 with size 200000."
The data is 420551x14 of weather data. My code is as follows:
import pandas as pd
import numpy as np
import keras
data = pd.read_csv("D:\\School\\Spring_2019\\GraduateProject\\jena_climate_2009_2016_Data\\jena_climate_2009_2016.csv")
data = data.iloc[:,data.columns!='Date Time']
data
# Standardize the Data
from sklearn import preprocessing
data = preprocessing.scale(data[:200000])
# Build Generators
from keras.preprocessing.sequence import TimeseriesGenerator
target = data[:,1] # Should target be scaled?
# ? Do I need to remove targets from the data variable?
trainGen = TimeseriesGenerator(data,targets=target,length=1440,
sampling_rate=6,
batch_size=190,
start_index=0,
end_index=200000)
valGen = TimeseriesGenerator(data,targets=target,length=1440,
sampling_rate=6,
batch_size=190,
start_index=199999,
end_index=300000)
testGen = TimeseriesGenerator(data,targets=target,length=6,
batch_size=128,
start_index=300000,
end_index=420550)
from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop
from keras.layers import LSTM
#Flatten part is: 240 = lookback//step. This is 1440/6 because we are looking at
model = Sequential()
model.add(layers.Flatten(input_shape=(240,data.shape[-1])))
model.add(layers.Dense(32,activation='relu'))
model.add(layers.Dense(1))
val_steps = 300000-200001-1440
model.compile(optimizer=RMSprop(),loss='mae')
history = model.fit_generator(trainGen,
steps_per_epoch=250,
epochs=20,
validation_data=valGen,
validation_steps=val_steps)
Let me know if you need anything else and thank you greatly in advance.
Well, you've only selected first 200000 rows for your data (data = preprocessing.scale(data[:200000]), so validation and test generators are out of bounds (index > 200000)
I built a Keras regressor using the following code:
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import numpy as ny
import pandas
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(2)
X = ny.array([[1,2], [3,4], [5,6], [7,8], [9,10]])
sc_X=StandardScaler()
X_train = sc_X.fit_transform(X)
Y = ny.array([3, 4, 5, 6, 7])
Y=ny.reshape(Y,(-1,1))
sc_Y=StandardScaler()
Y_train = sc_Y.fit_transform(Y)
N = 5
def brain():
#Create the brain
br_model=Sequential()
br_model.add(Dense(3, input_dim=2, kernel_initializer='normal',activation='relu'))
br_model.add(Dense(2, kernel_initializer='normal',activation='relu'))
br_model.add(Dense(1,kernel_initializer='normal'))
#Compile the brain
br_model.compile(loss='mean_squared_error',optimizer='adam')
return br_model
def predict(X,sc_X,sc_Y,estimator):
prediction = estimator.predict(sc_X.fit_transform(X))
return sc_Y.inverse_transform(prediction)
estimator = KerasRegressor(build_fn=brain, epochs=1000, batch_size=5,verbose=0)
# print "Done"
estimator.fit(X_train,Y_train)
prediction = estimator.predict(X_train)
print predict(X,sc_X,sc_Y,estimator)
X_test = ny.array([[1.5,4.5], [7,8], [9,10]])
print predict(X_test,sc_X,sc_Y,estimator)
The issue I face is that the code is not predicting the same value (for example, it predicting 6.64 for [9,10] in the first prediction (X) and 6.49 for [9,10] in the second prediction (X_test) )
The full output is this:
[2.9929883 4.0016675 5.0103474 6.0190268 6.6434317]
[3.096634 5.422326 6.4955378]
Why do I get different values and how do I resolve them?
The problem lies in this line of code:
prediction = estimator.predict(sc_X.fit_transform(X))
You are fitting a new scaler every time when you predict values for new data. This is where differences come from. Try:
prediction = estimator.predict(sc_X.transform(X))
In this case, you use a pretrained scaler.
Whenever I run the following code, I keep getting different outputs. Please could someone help me out with this? Code:
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.preprocessing import StandardScaler
import numpy as ny
X = ny.array([[1,2], [3,4], [5,6], [7,8], [9,10]])
sc_X=StandardScaler()
X_train = sc_X.fit_transform(X)
Y = ny.array([3, 4, 5, 6, 7])
Y=ny.reshape(Y,(-1,1))
sc_Y=StandardScaler()
Y_train = sc_Y.fit_transform(Y)
N = 5
def brain():
#Create the brain
br_model=Sequential()
br_model.add(Dense(3, input_dim=2, kernel_initializer='normal',activation='relu'))
br_model.add(Dense(2, kernel_initializer='normal',activation='relu'))
br_model.add(Dense(1,kernel_initializer='normal'))
#Compile the brain
br_model.compile(loss='mean_squared_error',optimizer='adam')
return br_model
estimator = KerasRegressor(build_fn=brain, epochs=1000, batch_size=5,verbose=0)
estimator.fit(X_train,Y_train)
prediction = estimator.predict(X_train)
print Y
print sc_Y.inverse_transform(prediction)
Basically, I have declared a dataset, am training a neural network to do regression on that and predict the values. Given that everything is already hardcoded into the code, I must be getting the same output everytime I run. However, this is not the case. I request you to help me out.
I tried to train my model on Google Cloud ML using this sample code:
import keras
from keras import optimizers
from keras import losses
from keras import metrics
from keras.models import Model, Sequential
from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed
import numpy as np
def test():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.add(RepeatVector(3))
model.add(TimeDistributed(Dense(3)))
model.compile(loss=losses.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy],
sample_weight_mode='temporal')
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
if __name__ == '__main__':
test()
and i got this error:
The replica master 0 exited with a non-zero status of 245. Termination reason: Error.
Detailed error output is big, so i'm pasting it here in pastebin
Note this output:
Module raised an exception for failing to call a subprocess Command '['python', '-m', u'trainer.test', '--job-dir', u'gs://my_test_bucket_keras/s_27_100630']' returned non-zero exit status -11.
And I guess the google cloud will run your code with an extra parameter called --job-dir. So perhaps you can try add the following code in your example code?
import ...
import argparse
def test():
model = Sequential()
model.add(Dense(2, input_shape=(3,)))
model.add(RepeatVector(3))
model.add(TimeDistributed(Dense(3)))
model.compile(loss=losses.MSE,
optimizer=optimizers.RMSprop(lr=0.0001),
metrics=[metrics.categorical_accuracy],
sample_weight_mode='temporal')
x = np.random.random((1, 3))
y = np.random.random((1, 3, 3))
model.train_on_batch(x, y)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Input Arguments
parser.add_argument(
'--job-dir',
help='GCS location to write checkpoints and export models',
required=True
)
args = parser.parse_args()
arguments = args.__dict__
test()
# test(**arguments) # or if you want to use this job_dir parameter in your code
Not 100% sure this will work but I think you can give it a try.
Also I have a post here to do something similar, perhaps you can take a look there as well.
Problem is resolved. All I had to do is use tensorflow 1.1.0 instead default 1.0.1