Binding ViewModel events outside of the init - ios

I am using RxSwift and Swinject in my project. The way I bind the inputs / outputs is not exactly the same as in the example given by RxSwift. In RxExample/GitHubSignup, the binding is done in the init(), right? But I found it difficult to implement because I use Swinject+SwinjectStoryboard to do Dependency Injection to the View Controller. Thus, the init() is unavailable because the one instantiating the View Models is the Swinject container. So, is there a way to bind the view controller and view model together besides using init()?
I was thinking that I can maybe use var instead of let for the output observables and make a func bind(observables: [Observable]) or something that will do the bindings and transformations from input to output instead. But because they will be vars and not lets, that means it seems like we are permitted to change the bindings throughout the code. Unlike when we just use lets and bind them in the init(). And also, by using a function instead of the initializer, I have to store the dependencies into a member variable. While if I use the initializer, I can just transform the dependencies inside of a map or flatMap.
And also I have another question. Say, if I have this:
class MyViewController: UIViewController {
#IBOutlet weak var refreshButton: UIButton!
#IBOutlet weak var tableView: UITableView!
var viewModel: MyViewModel!
private let disposeBag = DisposeBag()
override func viewDidLoad() {
super.viewDidLoad()
viewModel = MyViewModel(refreshTap: refreshButton.rx.tap, dataProvider: ApiAdapter().getData)
}
private func setupEvents() {
viewModel.tableDTOs.bind(to: tableView.rx.items(
cellIdentifier: reuseId, cellType: TableViewCell.self)) { _, dto, cell in
cell.fill(with: dto)
}.disposed(by: disposeBag)
}
}
final class MyViewModel {
let tableDTOs: Observable<[TableDTO]>
init(refreshTap: Observable<Void>, dataProvider: () -> Observable<[TableDTO]>) {
tableDTOs = Observable.merge(.just(), refreshTap) //Merge with .just to emit at once for initial values
.flatMapLatest { dataProvider().asDriver() }
}
}
So in this case, if the dataProvider returned complete or error, the disposable will be disposed, right? So the scene will be unresponsive because the UI is already unbound. Any idea how to fix that?
Thanks.

So, is there a way to bind the view controller and view model together besides using init()?
Yes there is. Give the view model a function that takes the inputs and returns the outputs.
But because they will be vars and not lets, that means it seems like we are permitted to change the bindings throughout the code.
Don't ever make an Observable (or Subject, or Observer) a var always use let Functional Reactive Programming is a functional paradigm so no vars.
So in this case, if the dataProvider returned complete or error, the disposable will be disposed, right? So the scene will be unresponsive because the UI is already unbound. Any idea how to fix that?
Yes and no. If the dataProvider emits a completed event, that will not dispose because the flatMapLatest only disposes if all of its inputs complete. Since the refreshTap has not yet completed, the flatMapLatest will continue to accept events from it and call it's closure for each one.
If the dataProvider emits an error event, that will dispose because and error event short circuits the chain. However, since you use .asDriver() on your dataProvider, the Driver returned from the closure can't possibly emit an error event. You're safe.
Other ways of stopping the error from breaking the chain are to use .materialize() or any of the .catchError operators. For example:
.flatMapLatest {
dataProvider
.map { Result<[TableDTO], Error>.success($0) }
.catchError { Observable.just(Result<[TableDTO], Error>.failure($0) }
}

Related

Memory Leak Kotlin Native library in iOS

I'm building a Kotlin library to use in my iOS app using Kotlin/Native. After I call some methods in the library from Swift, which works, I also want to call methods in Swift from the library. To accomplish this I implemented an interface in the library:
class Outbound {
interface HostInterfaceForTracking {
fun calcFeatureVector(bitmap: Any?): Array<Array<FloatArray>>?
}
var hostInterface: HostInterfaceForTracking? = null
fun registerInterface(hostInterface: HostInterfaceForTracking) {
this.hostInterface = hostInterface
instance.hostInterface = hostInterface
}
}
This is implemented on the Swift side like this:
class HostInterfaceForTracking : OutboundHostInterfaceForTracking {
var t : Outbound? = nil
init() {
TrackingWrapper.instance?.runOnMatchingLibraryThread {
self.t = Outbound()
self.t!.registerInterface(hostInterface: self)
}
}
func calcFeatureVector(bitmap: Any?) -> KotlinArray<KotlinArray<KotlinFloatArray>>? {
do {
var test : Any? = (bitmap as! Bitmap).bitmap
return nil
} catch {
return nil
}
}
}
The TrackingWrapper looks like this:
class TrackingWrapper : NSObject {
static var instance: TrackingWrapper? = nil
var inbound: Inbound? = nil
var worker: Worker
override init() {
self.worker = Worker()
super.init()
initInboundInterface()
}
func initInboundInterface() {
runOnMatchingLibraryThread {
TrackingWrapper.instance = self
self.inbound = Inbound()
HostInterfaceForTracking()
}
}
func runOnMatchingLibraryThread(block: #escaping() -> Void) {
worker.enqueue {
block()
}
}
}
The function runOnMatchingLibraryThread is needed because every call to the TrackingLibrary needs to be called from the exact same thread, so the Worker class initializes a thread and enqueues every method to that thread.
The Bitmap in this case is simply a wrapper for an UIImage, which I already accessed with the .bitmap call, so I've tried to access the wrapped UIImage and save it in the test variable. The library gets the current camera frame from the Swift side every few frames and sends the current image wrapped as a Bitmap to the method calcFeatureVector depicted here.
Problem: My memory load starts increasing as soon as the app starts until the point it crashes. This is not the case if I don't access the wrapped UIImage (var test : Any? = (bitmap as! Bitmap)). So there is a huge memory leak, just by accessing the wrapped variable on the Swift side. Is there anything I've missed or is there any way to release the memory?
Looks like you have a circular dependency here:
TrackingWrapper.instance?.runOnMatchingLibraryThread {
self.t = Outbound()
self.t!.registerInterface(hostInterface: self)
}
You are asking a property inside HostInterfaceForTracking to maintain a strong reference to the same instance of HostInterfaceForTracking. You should be using [weak self] to avoid the circular reference.
EDIT:
Ok after seeing the rest of you code theres a lot to unpack. There is a lot of unnecessary bouncing back and forth between classes, functions and threads.
There is no need to use runOnMatchingLibraryThread to just create an instance of something. You only need to use that for the code processing the image itself (I would assume, I haven't seen anything so far that requires being split off into another thread). Inside TrackingWrapper, you can create a singleton more easily, and matching the swift pattern by simply doing this as the first line:
static let shared = TrackingWrapper()
And everywhere you want to use it, you can just call TrackingWrapper.shared. This is more common and will avoid one of the levels of indirection in the code.
I'm not sure what Worker or Inbound are, but again these can and should be created inside the TrackingWrapper init, rather than branching Inbound's init, to use another thread.
Inside initInboundInterface you are creating an instance of HostInterfaceForTracking() which doesn't get stored anywhere. The only reason HostInterfaceForTracking is continuing to stay in memory after its creation, is because of the internal circular dependency inside it. This is 100% causing some form of a memory issue for you. This should probably also be a property on TrackingWrapper, and again, its Init should not be called inside runOnMatchingLibraryThread.
Having HostInterfaceForTracking's init, also using runOnMatchingLibraryThread is problematic. If we inline all the code whats happening is this:
TrackingWrapper
init() {
self.runOnMatchingLibraryThread {
TrackingWrapper.instance = self
self.inbound = Inbound()
TrackingWrapper.instance?.runOnMatchingLibraryThread {
self.t = Outbound()
self.t!.registerInterface(hostInterface: self)
}
}
}
Having all these classes unnecessarily keep coming back to TrackingWrapper is going to cause issues.
Inside HostInterfaceForTracking 's init, no need to be creating Outbound on a separate thread. First line in this class can simply be:
var t : Outbound = OutBound()
Or do it in the init if you prefer. Either way will also remove the issue of needing to unwrap Outbound before using it.
Inside Outbound you are storing 2 references to the hostInterface instance:
this.hostInterface = hostInterface
instance.hostInterface = hostInterface
I would have imagined there should only be 1. If there are now multiple copies of a class that has a circular dependency, which has multiple calls to separate threads. This again will cause issues.
I'm still not sure on the differences between Swift and Kotlin. In Swift when passing self into a function to be stored, the class storing it would mark the property as weak, like so:
weak var hostInterface: ......
Which will avoid any circular dependency from forming. A quick google says this isn't how things work in Kotlin. It might be better to look into the swift side passing in a closure (lambda on kotlin) and the kotlin side executing that. This might avoid the need to store a strong reference. Otherwise you need to be looking into some part of your code setting hostInterface back to null. Again its a bit hard to say only seeing some of the code and not knowing how its working.
In short, it looks like the code is very over complicated, and needs to be simplified, so that all these moving pieces can be tracked easier.

Binding model and view: how to observe object properties

I have a view structured like a form that creates a model object. I am trying to bind the form elements (UIControl) to the model properties, so that the views auto-update when their corresponding model property is changed, and the model update when the controls are changed (two way binding). The model can change without the view knowing because multiple views can be linked to one same model property.
Approach 1: Plain Swift
My problem is the following: to observe changes to the model properties, I tried to use KVO in Swift, and specifically the observe(_:changeHandler:) method.
class Binding<View: NSObject, Object: NSObject, ValueType> {
weak var object: Object?
weak var view: View?
var objectToViewObservation: NSKeyValueObservation?
var viewToObjectObservation: NSKeyValueObservation?
private var objectKeyPath: WritableKeyPath<Object, ValueType>
private var viewKeyPath: WritableKeyPath<View, ValueType>
init(betweenObject objectKeyPath: WritableKeyPath<Object, ValueType>,
andView viewKeyPath: WritableKeyPath<View, ValueType>) {
self.objectKeyPath = objectKeyPath
self.viewKeyPath = viewKeyPath
}
override func bind(_ object: Object, with view: View) {
super.bind(object, with: view)
self.object = object
self.view = view
// initial value from object to view
self.view![keyPath: viewKeyPath] = self.object![keyPath: objectKeyPath]
// object --> view
objectToViewObservation = object.observe(objectKeyPath) { _, change in
guard var view = self.view else {
// view doesn't exist anymore
self.objectToViewObservation = nil
return
}
guard let value = change.newValue else { return }
view[keyPath: self.viewKeyPath] = value
}
// view --> object
viewToObjectObservation = view.observe(viewKeyPath) { _, change in
guard var object = self.object else {
// object doesn't exist anymore
self.viewToObjectObservation = nil
return
}
guard let value = change.newValue else { return }
object[keyPath: self.objectKeyPath] = value
}
}
}
However some of the properties of my model have types CustomEnum, CustomClass, Bool?, and ClosedRange<Int>, and to use observe I had to mark them as #objc dynamic, which yielded the error:
Property cannot be marked #objc because its type cannot be represented in Objective-C
Approach 2: Using RxSwift rx.observe
I turned to RxSwift and the rx.observe method thinking I could work around this problem, but the same thing happened (at runtime this time).
// In some generic bridge class between the view and the model
func bind(to object: SomeObjectType) {
object.rx
.observe(SomeType.self, "someProperty")
.flatMap { Observable.from(optional: $0) }
.bind(to: self.controlProperty)
.disposed(by: disposeBag)
}
Approach 3: Using RxSwift BehaviorRelays?
This is my first experience with RxSwift, and I know I should be using BehaviorRelay for my model, however I don't want to change all my model properties as my model object is working with other framework. I could try to implement a bridge then, to transform model properties into BehaviorRelay, but I would come across the same problem: how to listen for model changes.
In this question, there were no answer as to how to listen for property changes without refactoring all model properties to RxSwift's Variable (currently deprecated).
Approach 4: Using didSet Swift property observer?
The didSet and willSet property observers in plain Swift would allow listening for changes, however this would require to mark all the properties in the model with these observers, which I find quite inconvenient, since my model object has a lot of properties. If there is a way to add these observers at runtime, this would solve my problem.
I believe that what I am trying to achieve is quite common, having a set of views that modify a model object, however I can't find a way to properly link the model to the view, so that both auto-update when needed.
Basically, I'm looking for an answer to one of the following questions:
Is there something I overlooked, is there a better way to achieve what I want?
or How to overcome the "Property cannot be marked #objc" problem?
or How to bridge my model object to BehaviorRelay without changing my model?
or How to add didSet observers at runtime?
You said:
I believe that what I am trying to achieve is quite common, having a set of views that modify a model object, however I can't find a way to properly link the model to the view, so that both auto-update when needed.
Actually it's not at all common. One idea you don't mention is to wrap your entire model into a Behavior Relay. Then the set of views can modify your model object.
Each of your views, in turn, can observe the model in the behavior relay and update accordingly. This is the basis of, for example, the Redux pattern.
You could also use your approach #3 and use property wrappers to make the code a bit cleaner:
#propertyWrapper
struct RxPublished<Value> {
private let relay: BehaviorRelay<Value>
public init(wrappedValue: Value) {
self.relay = BehaviorRelay(value: wrappedValue)
}
var wrappedValue: Value {
get { relay.value }
set { relay.accept(newValue) }
}
var projectedValue: Observable<Value> {
relay.asObservable()
}
}
But understand that the whole reason you are having this problem is not due to Rx itself, but rather due to the fact that you are trying to mix paradigms. You are increasing the complexity of your code. Hopefully, it's just a temporary increase during a refactoring.
Old Answer
You said you want to make it "so that the views auto-update when their corresponding model property is changed, and the model update when the controls are changed (two way binding)."
IMO, that way of thinking about the problem is incorrect. Better would be to examine each output independently of all other outputs and deal with it directly. In order to explain what I mean, I will use the example of converting °F to °C and back...
This sounds like a great reason to use 2-way binding but let's see?
// the chain of observables represents a view model
celsiusTextField.rx.text // • this is the input view
.orEmpty // • these next two convert
.compactMap { Double($0) } // the view into an input model
.map { $0 * 9 / 5 + 32 } // • this is the model
.map { "\($0)" } // • this converts the model into a view
.bind(to: fahrenheitTextField) // • this is the output view
.disposed(by: disposeBag)
fahrenheitTextField.rx.text
.orEmpty
.compactMap { Double($0) }
.map { ($0 - 32) * 5 / 9 }
.map { "\($0)" }
.bind(to: celsiusTextField.rx.text)
.disposed(by: disposeBag)
The above code handles the two-way communication between the text fields without two-way binding. It does this by using two separate view models (The view model is the code between the text Observable and the text Observer as described in the comments.)
We can see a lot of duplication. We can DRY it up a bit:
extension ControlProperty where PropertyType == String? {
func viewModel(model: #escaping (Double) -> Double) -> Observable<String> {
orEmpty
.compactMap { Double($0) }
.map(model)
.map { "\($0)" }
}
}
You may prefer a different error handling strategy than what I used above. I was striving for simplicity since this is an example.
The key though is that each observable chain should be centered on a particular effect. It should combine all the causes that contribute to that effect, implement some sort of logic on the inputs, and then emit the needed output for that effect. If you do this to each output individually you will find that you don't need two-way binding at all.

rxswift block life cycle

I have a viewmode class like this :
class ViewMode {
let validateCountResult: Driver<Bool>
init(username: Driver<String>) {
validateCountResult = username
.flatMapLatest { username in
return // validate username
}
}
And I have a subclass of UIViewController as follow :
class ViewController : UIViewController{
override func viewDidLoad() {
super.viewDidLoad()
let viewmode =
ViewMode(textfiled.rx.texttext.orEmpty.asDriver())
viewmode.validateCountResult.drive(onNext:{
// TODO Something
FuncA()
})
}
}
When viewDidload finishes, I believe the viewmode should deinits as well. But I see the binding still exists and FuncA still get called!
Why is it so?
The easiest way to understand binding is to think of the relationship as a connection between two entities:
A producer, which produces the value。
A receiver, which processes the values from the producer.
A receiver cannot return a value. This is a general rule when using bindings of RxSwift.
The fundamental function of binding is bind(to:), and to bind an observable to another entity it's required that the receiver conforms to ObserverType.
You should dispose your Disposable types by creating a DisposeBag.
If you don’t, there is no guarrantee that your viewController even deinits or your disposable types get disposed as well. They create a mutal like together via your ViewMode and all three objects stay in memory.
Take a look at this article to see how to find memory leaks.

Ambiguous reference to member 'subscribe' Swift 3

I am new to Reactive programming, and I'm trying to observe a boolean value from my ViewModel in order to let my ViewController know when to start/stop the app's loader screen.
It's fairly simple and I want to use this method to avoid unnecessary delegates, since my ViewModel holds the business logic and my ViewController handles the UI.
My problem is this compiler error: Ambiguous reference to member 'subscribe'.
It also adds the two possible candidates, as you can see in the image below:
In my ViewModel, I've declared the observable as PublishSubject:
let done = PublishSubject<Bool>()
And I use it while observing another stream:
func subscribe() {
done.onNext(false)
anotherObservable.subscribe(
// other events observed here but not relevant to this matter
onCompleted: {
self.done.onNext(true)
}).addDisposableTo(rx_disposeBag)
}
And, finally, this is how I'm trying to handle it in the ViewController:
self.model.done.subscribe(
.onNext { isDone in
if isDone {
self.removeLoader()
}
}).addDisposableTo(rx_disposeBag)
I believe there is something simple I'm probably missing, so any help is appreciated.
In your second subscribe should be:
self.model.done.subscribe(onNext: { isDone in
if isDone {
self.removeLoader()
}
}).addDisposableTo(rx_disposeBag)

Chaining RxSwift observable with different type

I need request different types of models from network and then combine them into one model.
How is it possible to chain multiple observables and return another observable?
I have something like:
func fetchDevices() -> Observable<DataResponse<[DeviceModel]>>
func fetchRooms() -> Observable<DataResponse<[RoomModel]>>
func fetchSections() -> Observable<DataResponse<[SectionModel]>>
and I need to do something like:
func fetchAll() -> Observable<(AllModels, Error)> {
fetchSections()
// Then if sections is ok I need to fetch rooms
fetchRooms()
// Then - fetch devices
fetchDevices()
// And if everything is ok create AllModels class and return it
// Or return error if any request fails
return AllModels(sections: sections, rooms: rooms, devices:devices)
}
How to achieve it with RxSwift? I read docs and examples but understand how to chain observables with same type
Try combineLatest operator. You can combine multiple observables:
let data = Observable.combineLatest(fetchDevices, fetchRooms, fetchSections)
{ devices, rooms, sections in
return AllModels(sections: sections, rooms: rooms, devices:devices)
}
.distinctUntilChanged()
.shareReplay(1)
And then, you subscribe to it:
data.subscribe(onNext: {models in
// do something with your AllModels object
})
.disposed(by: bag)
I think the methods that fetching models should reside in ViewModel, and an event should be waiting for start calling them altogether, or they won't start running.
Assume that there's a button calls your three methods, and one more button that will be enabled if the function call is succeeded.
Consider an ViewModel inside your ViewController.
let viewModel = ViewModel()
In ViewModel, declare your abstracted I/O event like this,
struct Input {
buttonTap: Driver<Void>
}
struct Output {
canProcessNext: Driver<Bool>
}
Then you can clearly transform your Input into Output by making function like this in ViewModel.
func transform(input: Input) -> Output {
// TODO: transform your button tap event into fetch result.
}
At viewDidLoad,
let output = viewModel.transform(input: yourButton.rx.tap.asDriver())
output.drive(nextButton.rx.isEnabled).disposed(by: disposeBag)
Now everything's ready but combining your three methods - put them in ViewModel.
func fetchDevices() -> Observable<DataResponse<[DeviceModel]>>
func fetchRooms() -> Observable<DataResponse<[RoomModel]>>
func fetchSections() -> Observable<DataResponse<[SectionModel]>>
Let's finish the 'TODO'
let result = input.buttonTap.withLatestFrom(
Observable.combineLatest(fetchDevices(), fetchRooms(), fetchSections()) { devices, rooms, sections in
// do your job with response data and refine final result to continue
return result
}.asDriver(onErrorJustReturn: true))
return Output(canProcessNext: result)
I'm not only writing about just make it work, but also considering whole design for your application. Putting everything inside ViewController is not a way to go, especially using Rx design. I think it's a good choice to dividing VC & ViewModel login for future maintenance. Take a look for this sample, I think it might help you.

Resources