Rotated contour pixels - image-processing

def find_border(self):
print("Start capturing the border")
ret, thresh = cv2.threshold(self.__grayScaledImage, 250, 255, 0)
contours = cv2.findContours(thresh.astype(np.uint8), cv2.RETR_TREE,
cv2.CHAIN_APPROX_NONE)[-2]
# There might be multiple are with 255. then you need to find the index of the largest contour
areas = [cv2.contourArea(c) for c in contours]
max_index = np.argmax(areas)
border = contours[max_index]
border = border.reshape(-1, border.shape[2])
for i, j in border:
if i >=0 and i < self.__image.shape[0] and j >= 0 and j < self.__image.shape[1]:
self.__image[i, j] = [255, 0, 0]
print("Finish capturing the border")
# cv2.drawContours(self.__image, border, -1, (255, 0, 0), 1)
plt.imshow(self.__image)
plt.show()
border = border.reshape(-1, border.shape[2])
return border
I have the above code snippets to obtain the border pixels of an image, but when I tried two ways to visualize the border: using cv2.drawContours or marking red points on pixels for border pixels.
The drawContours gave me a reasonable output but the point marking method generated a rotated contour.
Later I checked the border pixels and found they are actually the points reflected in the rotated one.
Here I have
self.__grayScaledImage = cv2.cvtColor(self.__image, cv2.COLOR_RGB2GRAY)
I dont know why.

you mixed x and y up somewhere. the contour isn't rotated, it's flipped along the diagonal.
numpy indexing is matrix style. [row, column] or [y,x] if you like
OpenCV gives you (x,y) points, or (column, row)
oh and thanks for using pictures to illustrate the problem. makes things a lot easier than otherwise.

Related

How to connect disjointed lines or edges in images?

I am currently working on lines extraction from a binary image. I initially performed a few image processing steps including threshold segmentation and obtained the following binary image.
As can be seen in the binary image the lines are splitted or broken. And I wanted to join the broken line as shown in the image below marked in red. I marked the red line manually for a demonstration.
FYI, I used the following code to perform the preprocessing.
img = cv2.imread('original_image.jpg') # loading image
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # coverting to gray scale
median_filter = cv2.medianBlur (gray_image, ksize = 5) # median filtering
th, thresh = cv2.threshold (median_filter, median_filter.mean(), 255, cv2.THRESH_BINARY) # theshold segmentation
# small dots and noise removing
nlabels, labels, stats, centroids = cv2.connectedComponentsWithStats(thresh, None, None, None, 8, cv2.CV_32S)
areas = stats[1:,cv2.CC_STAT_AREA]
result = np.zeros((labels.shape), np.uint8)
min_size = 150
for i in range(0, nlabels - 1):
if areas[i] >= min_size: #keep
result[labels == i + 1] = 255
fig, ax = plt.subplots(2,1, figsize=(30,20))
ax[0].imshow(img)
ax[0].set_title('Original image')
ax[1].imshow(cv2.cvtColor(result, cv2.COLOR_BGR2RGB))
ax[1].set_title('preprocessed image')
I would really appreciate it if you have any suggestions or steps on how to connect the lines? Thank you
Using the following sequence of methods I was able to get a rough approximation. It is a very simple solution and might not work for all cases.
1. Morphological operations
To merge neighboring lines perform morphological (dilation) operations on the binary image.
img = cv2.imread('image_path', 0) # grayscale image
img1 = cv2.imread('image_path', 1) # color image
th = cv2.threshold(img, 150, 255, cv2.THRESH_BINARY)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (19, 19))
morph = cv2.morphologyEx(th, cv2.MORPH_DILATE, kernel)
2. Finding contours and extreme points
My idea now is to find contours.
Then find the extreme points of each contour.
Finally find the closest distance among these extreme points between neighboring contours. And draw a line between them.
cnts1 = cv2.findContours(morph, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts1[0] # storing contours in a variable
Lets take a quick detour to visualize where these extreme points are present:
# visualize extreme points for each contour
for c in cnts:
left = tuple(c[c[:, :, 0].argmin()][0])
right = tuple(c[c[:, :, 0].argmax()][0])
top = tuple(c[c[:, :, 1].argmin()][0])
bottom = tuple(c[c[:, :, 1].argmax()][0])
# Draw dots onto image
cv2.circle(img1, left, 8, (0, 50, 255), -1)
cv2.circle(img1, right, 8, (0, 255, 255), -1)
cv2.circle(img1, top, 8, (255, 50, 0), -1)
cv2.circle(img1, bottom, 8, (255, 255, 0), -1)
(Note: The extreme points points are based of contours from morphological operations, but drawn on the original image)
3. Finding closest distances between neighboring contours
Sorry for the many loops.
First, iterate through every contour (split line) in the image.
Find the extreme points for them. Extreme points mean top-most, bottom-most, right-most and left-most points based on its respective bounding box.
Compare the distance between every extreme point of a contour with those of every other contour. And draw a line between points with the least distance.
for i in range(len(cnts)):
min_dist = max(img.shape[0], img.shape[1])
cl = []
ci = cnts[i]
ci_left = tuple(ci[ci[:, :, 0].argmin()][0])
ci_right = tuple(ci[ci[:, :, 0].argmax()][0])
ci_top = tuple(ci[ci[:, :, 1].argmin()][0])
ci_bottom = tuple(ci[ci[:, :, 1].argmax()][0])
ci_list = [ci_bottom, ci_left, ci_right, ci_top]
for j in range(i + 1, len(cnts)):
cj = cnts[j]
cj_left = tuple(cj[cj[:, :, 0].argmin()][0])
cj_right = tuple(cj[cj[:, :, 0].argmax()][0])
cj_top = tuple(cj[cj[:, :, 1].argmin()][0])
cj_bottom = tuple(cj[cj[:, :, 1].argmax()][0])
cj_list = [cj_bottom, cj_left, cj_right, cj_top]
for pt1 in ci_list:
for pt2 in cj_list:
dist = int(np.linalg.norm(np.array(pt1) - np.array(pt2))) #dist = sqrt( (x2 - x1)**2 + (y2 - y1)**2 )
if dist < min_dist:
min_dist = dist
cl = []
cl.append([pt1, pt2, min_dist])
if len(cl) > 0:
cv2.line(img1, cl[0][0], cl[0][1], (255, 255, 255), thickness = 5)
4. Post-processing
Since the final output is not perfect, you can perform additional morphology operations and then skeletonize it.

How to get the area of the contours?

I have a picture like this:
And then I transform it into binary image and use canny to detect edge of the picture:
gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
edge = Image.fromarray(edges)
And then I get the result as:
I want to get the area of 2 like this:
My solution is to use HoughLines to find lines in the picture and calculate the area of triangle formed by lines. However, this way is not precise because the closed area is not a standard triangle. How to get the area of region 2?
A simple approach using floodFill and countNonZero could be the following code snippet. My standard quote on contourArea from the help:
The function computes a contour area. Similarly to moments, the area is computed using the Green formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using drawContours or fillPoly, can be different. Also, the function will most certainly give a wrong results for contours with self-intersections.
Code:
import cv2
import numpy as np
# Input image
img = cv2.imread('images/YMMEE.jpg', cv2.IMREAD_GRAYSCALE)
# Needed due to JPG artifacts
_, temp = cv2.threshold(img, 128, 255, cv2.THRESH_BINARY)
# Dilate to better detect contours
temp = cv2.dilate(temp, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
# Find largest contour
cnts, _ = cv2.findContours(temp, cv2.RETR_EXTERNAL , cv2.CHAIN_APPROX_NONE)
largestCnt = []
for cnt in cnts:
if (len(cnt) > len(largestCnt)):
largestCnt = cnt
# Determine center of area of largest contour
M = cv2.moments(largestCnt)
x = int(M["m10"] / M["m00"])
y = int(M["m01"] / M["m00"])
# Initiale mask for flood filling
width, height = temp.shape
mask = img2 = np.ones((width + 2, height + 2), np.uint8) * 255
mask[1:width, 1:height] = 0
# Generate intermediate image, draw largest contour, flood filled
temp = np.zeros(temp.shape, np.uint8)
temp = cv2.drawContours(temp, largestCnt, -1, 255, cv2.FILLED)
_, temp, mask, _ = cv2.floodFill(temp, mask, (x, y), 255)
temp = cv2.morphologyEx(temp, cv2.MORPH_OPEN, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)))
# Count pixels in desired region
area = cv2.countNonZero(temp)
# Put result on original image
img = cv2.putText(img, str(area), (x, y), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, 255)
cv2.imshow('Input', img)
cv2.imshow('Temp image', temp)
cv2.waitKey(0)
Temporary image:
Result image:
Caveat: findContours has some problems one the right side, where the line is very close to the bottom image border, resulting in possibly omitting some pixels.
Disclaimer: I'm new to Python in general, and specially to the Python API of OpenCV (C++ for the win). Comments, improvements, highlighting Python no-gos are highly welcome!
There is a very simple way to find this area, if you take some assumptions that are met in the example image:
The area to be found is bounded on top by a line
Any additional lines in the image are above the line of interest
There are no discontinuities in the line
In this case, the area of the region of interest is given by the sum of the lengths from the bottom of the image to the first set pixel. We can compute this with:
import numpy as np
import matplotlib.pyplot as pp
img = pp.imread('/home/cris/tmp/YMMEE.jpg')
img = np.flip(img, axis=0)
pos = np.argmax(img, axis=0)
area = np.sum(pos)
print('Area = %d\n'%area)
This prints Area = 22040.
np.argmax finds the first set pixel on each column of the image, returning the index. By first using np.flip, we flip this axis so that the first pixel is actually the one on the bottom. The index corresponds to the number of pixels between the bottom of the image and the line (not including the set pixel).
Thus, we're computing the area under the line. If you need to include the line itself in the area, add pos.shape[0] to the area (i.e. the number of columns).

How can I filter out points of an edge-detected circle that are extremely noisy?

I am working on detecting the center and radius of a circular aperture that is illuminated by a laser beam. The algorithm will be fed images from a system that I have no physical control over (i.e. dimming the source or adjusting the laser position.) I need to do this with C++, and have chosen to use openCV.
In some regions the edge of the aperture is well defined, but in others it is very noisy. I currently am trying to isolate the "good" points to do a RANSAC fit, but I have taken other steps along the way. Below are two original images for reference:
I first began by trying to do a Hough fit. I performed a median blur to remove the salt and pepper noise, then a Gaussian blur, and then fed the image to the HoughCircle function in openCV, with sliders controlling the Hough parameters 1 and 2 defined here. The results were disastrous:
I then decided to try to process the image some more before sending it to the HoughCircle. I started with the original image, median blurred, Gaussian blurred, thresholded, dilated, did a Canny edge detection, and then fed the Canny image to the function.
I was eventually able to get a reasonable estimate of my circle, but it was about the 15th circle to show up when manually decreasing the Hough parameters. I manually drew the purple outline, with the green circles representing Hough outputs that were near my manual estimate. The below images are:
Canny output without dilation
Canny output with dilation
Hough output of the dilated Canny image drawn on the original image.
As you can see, the number of invalid circles vastly outnumbers the correct circle, and I'm not quite sure how to isolate the good circles given that the Hough transform returns so many other invalid circles with parameters that are more strict.
I currently have some code I implemented that works OK for all of the test images I was given, but the code is a convoluted mess with many tunable parameters that seems very fragile. The driving logic behind what I did was from noticing that regions of the aperture edges that were well-illuminated by the laser were relatively constant across several threshold levels (image shown below).
I did edge detection at two threshold levels and stored points that overlapped in both images. Currently there is also some inaccuracy with the result because the aperture edge does still shift slightly with the different threshold levels. I can post the very long code for this if necessary, but the pseudo-code behind it is:
1. Perform a median blur, followed by a Gaussian blur. Kernels are 9x9.
2. Threshold the image until 35% of the image is white. (~intensities > 30)
3. Take the Canny edges of this thresholded image and store (Canny1)
4. Take the original image, perform the same median and Gaussian blurs, but threshold with a 50% larger value, giving a smaller spot (~intensities > 45)
5. Perform the "Closing" morphology operation to further erode the spot and remove any smaller contours.
6. Perform another Canny to get the edges, and store this image (Canny2)
7. Blur both the Canny images with a 7x7 Gaussian blur.
8. Take the regions where the two Canny images overlap and say that these points are likely to be good points.
9. Do a RANSAC circle fit with these points.
I've noticed that there are regions of the edge detected circle that are pretty distinguishable by the human eye as being part of the best circle. Is there a way to isolate these regions for a RANSAC fit?
Code for Hough:
int houghParam1 = 100;
int houghParam2 = 100;
int dp = 10; //divided by 10 later
int x=616;
int y=444;
int radius = 398;
int iterations = 0;
int main()
{
namedWindow("Circled Orig");
namedWindow("Processed", 1);
namedWindow("Circles");
namedWindow("Parameters");
namedWindow("Canny");
createTrackbar("Param1", "Parameters", &houghParam1, 200);
createTrackbar("Param2", "Parameters", &houghParam2, 200);
createTrackbar("dp", "Parameters", &dp, 20);
createTrackbar("x", "Parameters", &x, 1200);
createTrackbar("y", "Parameters", &y, 1200);
createTrackbar("radius", "Parameters", &radius, 900);
createTrackbar("dilate #", "Parameters", &iterations, 20);
std::string directory = "Secret";
std::string suffix = ".pgm";
Mat processedImage;
Mat origImg;
for (int fileCounter = 2; fileCounter < 3; fileCounter++) //1, 12
{
std::string numString = std::to_string(static_cast<long long>(fileCounter));
std::string imageFile = directory + numString + suffix;
testImage = imread(imageFile);
Mat bwImage;
cvtColor(testImage, bwImage, CV_BGR2GRAY);
GaussianBlur(bwImage, processedImage, Size(9, 9), 9);
threshold(processedImage, processedImage, 25, 255, THRESH_BINARY); //THRESH_OTSU
int numberContours = -1;
int iterations = 1;
imshow("Processed", processedImage);
}
vector<Vec3f> circles;
Mat element = getStructuringElement(MORPH_ELLIPSE, Size(5, 5));
float dp2 = dp;
while (true)
{
float dp2 = dp;
Mat circleImage = processedImage.clone();
origImg = testImage.clone();
if (iterations > 0) dilate(circleImage, circleImage, element, Point(-1, -1), iterations);
Mat cannyImage;
Canny(circleImage, cannyImage, 100, 20);
imshow("Canny", cannyImage);
HoughCircles(circleImage, circles, HOUGH_GRADIENT, dp2/10, 5, houghParam1, houghParam2, 300, 5000);
cvtColor(circleImage, circleImage, CV_GRAY2BGR);
for (size_t i = 0; i < circles.size(); i++)
{
Scalar color = Scalar(0, 0, 255);
Point center2(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius2 = cvRound(circles[i][2]);
if (abs(center2.x - x) < 10 && abs((center2.y - y) < 10) && abs(radius - radius2) < 20) color = Scalar(0, 255, 0);
circle(circleImage, center2, 3, color, -1, 8, 0);
circle(circleImage, center2, radius2, color, 3, 8, 0);
circle(origImg, center2, 3, color, -1, 8, 0);
circle(origImg, center2, radius2,color, 3, 8, 0);
}
//Manual circles
circle(circleImage, Point(x, y), 3, Scalar(128, 0, 128), -1, 8, 0);
circle(circleImage, Point(x, y), radius, Scalar(128, 0, 128), 3, 8, 0);
circle(origImg, Point(x, y), 3, Scalar(128, 0, 128), -1, 8, 0);
circle(origImg, Point(x, y), radius, Scalar(128, 0, 128), 3, 8, 0);
imshow("Circles", circleImage);
imshow("Circled Orig", origImg);
int x = waitKey(50);
}
Mat drawnImage;
cvtColor(processedImage, drawnImage, CV_GRAY2BGR);
return 1;
}
Thanks #jalconvolvon - this is an interesting problem. Here's my result:
What I find important on and on is using dynamic parameter adjustment when prototyping, thus I include the function I used to tune Canny detection. The code also uses this answer for the Ransac part.
import cv2
import numpy as np
import auxcv as aux
from skimage import measure, draw
def empty_function(*arg):
pass
# tune canny edge detection. accept with pressing "C"
def CannyTrackbar(img, win_name):
trackbar_name = win_name + "Trackbar"
cv2.namedWindow(win_name)
cv2.resizeWindow(win_name, 500,100)
cv2.createTrackbar("canny_th1", win_name, 0, 255, empty_function)
cv2.createTrackbar("canny_th2", win_name, 0, 255, empty_function)
cv2.createTrackbar("blur_size", win_name, 0, 255, empty_function)
cv2.createTrackbar("blur_amp", win_name, 0, 255, empty_function)
while True:
trackbar_pos1 = cv2.getTrackbarPos("canny_th1", win_name)
trackbar_pos2 = cv2.getTrackbarPos("canny_th2", win_name)
trackbar_pos3 = cv2.getTrackbarPos("blur_size", win_name)
trackbar_pos4 = cv2.getTrackbarPos("blur_amp", win_name)
img_blurred = cv2.GaussianBlur(img.copy(), (trackbar_pos3 * 2 + 1, trackbar_pos3 * 2 + 1), trackbar_pos4)
canny = cv2.Canny(img_blurred, trackbar_pos1, trackbar_pos2)
cv2.imshow(win_name, canny)
key = cv2.waitKey(1) & 0xFF
if key == ord("c"):
break
cv2.destroyAllWindows()
return canny
img = cv2.imread("sphere.jpg")
#resize for convenience
img = cv2.resize(img, None, fx = 0.2, fy = 0.2)
#closing
kernel = np.ones((11,11), np.uint8)
img = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
#sharpening
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
img = cv2.filter2D(img, -1, kernel)
#test if you use different scale img than 0.2 of the original that I used
#remember that the actual kernel size for GaussianBlur is trackbar_pos3*2+1
#you want to get as full circle as possible here
#canny = CannyTrackbar(img, "canny_trakbar")
#additional blurring to reduce the offset toward brighter region
img_blurred = cv2.GaussianBlur(img.copy(), (8*2+1,8*2+1), 1)
#detect edge. important: make sure this works well with CannyTrackbar()
canny = cv2.Canny(img_blurred, 160, 78)
coords = np.column_stack(np.nonzero(canny))
model, inliers = measure.ransac(coords, measure.CircleModel,
min_samples=3, residual_threshold=1,
max_trials=1000)
rr, cc = draw.circle_perimeter(int(model.params[0]),
int(model.params[1]),
int(model.params[2]),
shape=img.shape)
img[rr, cc] = 1
import matplotlib.pyplot as plt
plt.imshow(img, cmap='gray')
plt.scatter(model.params[1], model.params[0], s=50, c='red')
plt.axis('off')
plt.savefig('sphere_center.png', bbox_inches='tight')
plt.show()
Now I'd probably try to calculate where pixels are statisticaly brigher and where they are dimmer to adjust the laser position (if I understand correctly what you're trying to do)
If the Ransac is still not enough. I'd try tuning Canny to only detect a perfect arc on top of the circle (where it's well outlined) and than try using the following dependencies (I suspect that this should be possible):

Detect caps on bottles using opencv and python

I know that there are a hundred topics about my question in all over the web, but i would like to ask specific for my problem because I tried almost all solutions without any success.
I am trying to count circles in an image (yes i have already tried hough circles but due to light reflections, i think, on my object is not very robust).
Then I tried to create a classifier (no success i think there is no enough features so the detection is not good)
I have also tried HSV conversation and tried to find my object with color (again I had some problems because of the light and the variations of colors)
As you can see on image, there are 8 caps and i would like to be able to count them.
Using all of this methods, i was able to detect the objects on an image (because I was optimizing all the parameters of functions for the specific image) but as soon as I load a new, similar, image the results was disappointing.
Please follow this link to see the Image
Bellow you can find parts of everything i have tried:
1. Hough circles
img = cv2.imread('frame71.jpg',1)
img = cv2.medianBlur(img,5)
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
if img == None:
print "There is no image file. Quiting..."
quit()
circles = cv2.HoughCircles(img,cv.CV_HOUGH_GRADIENT,3,50,
param1=55,param2=125,minRadius=25,maxRadius=45)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
print len(circles[0,:])
cv2.imshow('detected circles',cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()
2. HSV Transform, color detection
def image_process(frame, h_low, s_low, v_low, h_up, s_up, v_up, ksize):
temp = ksize
if(temp%2==1):
ksize = temp
else:
ksize = temp+1
#if(True):
# return frame
#thresh = frame
#try:
#TODO: optimize as much as possiblle this part of code
try:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower = np.array([h_low, s_low, v_low],np.uint8)
upper = np.array([h_up,s_up,h_up],np.uint8)
mask = cv2.inRange(hsv, lower, upper)
res = cv2.bitwise_and(hsv,hsv, mask= mask)
thresh = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
#thresh = cv2.threshold(res, 50, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.threshold(thresh, 50, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.medianBlur(thresh,ksize)
except Exception as inst:
print type(inst)
#cv2.imshow('thresh', thresh)
return thresh
3. Cascade classifier
img = cv2.imread('frame405.jpg', 1)
cap_cascade = cv2.CascadeClassifier('haar_30_17_16_stage.xml')
caps = cap_cascade.detectMultiScale(img, 1.3, 5)
#print caps
for (x,y,w,h) in caps:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0),2)
#cv2.rectangle(img, (10,10),(100,100),(0,255,255),4)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
quit()
About training the classifier I really used a lot of variations of images, samples, negatives and positives, number of stages, w and h but the results was not very accurate.
Finally I would like to know from your experience which is the best method I should follow and I will stick on that in order to optimize my detection. Keep in mind that all images are similiar but NOT identical. There are some differences due to light, movement etc
Than you in advance,
I did some experiment with the sample image. I'm posting my results, and if you find it useful, you can improve it further and optimize. Here are the steps:
downsample the image
perform morphological opening
find Hough circles
cluster the circles by radii (bottle circles should get the same label)
filter the circles by a radius threshold
you can also cluster circles by their center x and y coordinates (I haven't done this)
prepare a mask from the filtered circles and extract the possible bottles region
cluster this region by color
Code is in C++. I'm attaching my results.
Mat im = imread(INPUT_FOLDER_PATH + string("frame71.jpg"));
Mat small;
int kernelSize = 9; // try with different kernel sizes. 5 onwards gives good results
pyrDown(im, small); // downsample the image
Mat morph;
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(kernelSize, kernelSize));
morphologyEx(small, morph, MORPH_OPEN, kernel); // open
Mat gray;
cvtColor(morph, gray, CV_BGR2GRAY);
vector<Vec3f> circles;
HoughCircles(gray, circles, CV_HOUGH_GRADIENT, 2, gray.rows/8.0); // find circles
// -------------------------------------------------------
// cluster the circles by radii. similarly you can cluster them by center x and y for further filtering
Mat circ = Mat(circles);
Mat data[3];
split(circ, data);
Mat labels, centers;
kmeans(data[2], 2, labels, TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0), 2, KMEANS_PP_CENTERS, centers);
// -------------------------------------------------------
Mat rgb;
small.copyTo(rgb);
//cvtColor(gray, rgb, CV_GRAY2BGR);
Mat mask = Mat::zeros(Size(gray.cols, gray.rows), CV_8U);
for(size_t i = 0; i < circles.size(); i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
float r = centers.at<float>(labels.at<int>(i));
if (r > 30.0f && r < 45.0f) // filter circles by radius (values are based on the sample image)
{
// just for display
circle(rgb, center, 3, Scalar(0,255,0), -1, 8, 0);
circle(rgb, center, radius, Scalar(0,0,255), 3, 8, 0);
// prepare a mask
circle(mask, center, radius, Scalar(255,255,255), -1, 8, 0);
}
}
// use each filtered circle as a mask and extract the region from original downsampled image
Mat rgb2;
small.copyTo(rgb2, mask);
// cluster the masked region by color
Mat rgb32fc3, lbl;
rgb2.convertTo(rgb32fc3, CV_32FC3);
int imsize[] = {rgb32fc3.rows, rgb32fc3.cols};
Mat color = rgb32fc3.reshape(1, rgb32fc3.rows*rgb32fc3.cols);
kmeans(color, 4, lbl, TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0), 2, KMEANS_PP_CENTERS);
Mat lbl2d = lbl.reshape(1, 2, imsize);
Mat lbldisp;
lbl2d.convertTo(lbldisp, CV_8U, 50);
Mat lblColor;
applyColorMap(lbldisp, lblColor, COLORMAP_JET);
Results:
Filtered circles:
Masked:
Segmented:
Hello finally i think I found a way to count caps on bottles.
Read image
Teach (find correct values for HSV up/low limits)
Select desire color (using HSV and mask)
Find contours on the masked image
Find the minCircles for contours
Reject all circles beyond thresholds
I have also order a polarized filter which I think it will reduce glares a lot. I am open to suggestions for further improvement (robustness and speed). Both robustness and speed is crucial for my application.
Thank you.

How to find corners on a Image using OpenCv

I´m trying to find the corners on a image, I don´t need the contours, only the 4 corners. I will change the perspective using 4 corners.
I´m using Opencv, but I need to know the steps to find the corners and what function I will use.
My images will be like this:(without red points, I will paint the points after)
EDITED:
After suggested steps, I writed the code: (Note: I´m not using pure OpenCv, I´m using javaCV, but the logic it´s the same).
// Load two images and allocate other structures (I´m using other image)
IplImage colored = cvLoadImage(
"res/scanteste.jpg",
CV_LOAD_IMAGE_UNCHANGED);
IplImage gray = cvCreateImage(cvGetSize(colored), IPL_DEPTH_8U, 1);
IplImage smooth = cvCreateImage(cvGetSize(colored), IPL_DEPTH_8U, 1);
//Step 1 - Convert from RGB to grayscale (cvCvtColor)
cvCvtColor(colored, gray, CV_RGB2GRAY);
//2 Smooth (cvSmooth)
cvSmooth( gray, smooth, CV_BLUR, 9, 9, 2, 2);
//3 - cvThreshold - What values?
cvThreshold(gray,gray, 155, 255, CV_THRESH_BINARY);
//4 - Detect edges (cvCanny) -What values?
int N = 7;
int aperature_size = N;
double lowThresh = 20;
double highThresh = 40;
cvCanny( gray, gray, lowThresh*N*N, highThresh*N*N, aperature_size );
//5 - Find contours (cvFindContours)
int total = 0;
CvSeq contour2 = new CvSeq(null);
CvMemStorage storage2 = cvCreateMemStorage(0);
CvMemStorage storageHull = cvCreateMemStorage(0);
total = cvFindContours(gray, storage2, contour2, Loader.sizeof(CvContour.class), CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE);
if(total > 1){
while (contour2 != null && !contour2.isNull()) {
if (contour2.elem_size() > 0) {
//6 - Approximate contours with linear features (cvApproxPoly)
CvSeq points = cvApproxPoly(contour2,Loader.sizeof(CvContour.class), storage2, CV_POLY_APPROX_DP,cvContourPerimeter(contour2)*0.005, 0);
cvDrawContours(gray, points,CvScalar.BLUE, CvScalar.BLUE, -1, 1, CV_AA);
}
contour2 = contour2.h_next();
}
}
So, I want to find the cornes, but I don´t know how to use corners function like cvCornerHarris and others.
First, check out /samples/c/squares.c in your OpenCV distribution. This example provides a square detector, and it should be a pretty good start on how to detect corner-like features. Then, take a look at OpenCV's feature-oriented functions like cvCornerHarris() and cvGoodFeaturesToTrack().
The above methods can return many corner-like features - most will not be the "true corners" you are looking for. In my application, I had to detect squares that had been rotated or skewed (due to perspective). My detection pipeline consisted of:
Convert from RGB to grayscale (cvCvtColor)
Smooth (cvSmooth)
Threshold (cvThreshold)
Detect edges (cvCanny)
Find contours (cvFindContours)
Approximate contours with linear features (cvApproxPoly)
Find "rectangles" which were structures that: had polygonalized contours possessing 4 points, were of sufficient area, had adjacent edges were ~90 degrees, had distance between "opposite" vertices was of sufficient size, etc.
Step 7 was necessary because a slightly noisy image can yield many structures that appear rectangular after polygonalization. In my application, I also had to deal with square-like structures that appeared within, or overlapped the desired square. I found the contour's area property and center of gravity to be helpful in discerning the proper rectangle.
At a first glance, for a human eye there are 4 corners. But in computer vision, a corner is considered to be a point that has large gradient change in intensity across its neighborhood. The neighborhood can be a 4 pixel neighborhood or an 8 pixel neighborhood.
In the equation provided to find the gradient of intensity, it has been considered for 4-pixel neighborhood SEE DOCUMENTATION.
Here is my approach for the image in question. I have the code in python as well:
path = r'C:\Users\selwyn77\Desktop\Stack\corner'
filename = 'env.jpg'
img = cv2.imread(os.path.join(path, filename))
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #--- convert to grayscale
It is a good choice to always blur the image to remove less possible gradient changes and preserve the more intense ones. I opted to choose the bilateral filter which unlike the Gaussian filter doesn't blur all the pixels in the neighborhood. It rather blurs pixels which has similar pixel intensity to that of the central pixel. In short it preserves edges/corners of high gradient change but blurs regions that have minimal gradient changes.
bi = cv2.bilateralFilter(gray, 5, 75, 75)
cv2.imshow('bi',bi)
To a human it is not so much of a difference compared to the original image. But it does matter. Now finding possible corners:
dst = cv2.cornerHarris(bi, 2, 3, 0.04)
dst returns an array (the same 2D shape of the image) with eigen values obtained from the final equation mentioned HERE.
Now a threshold has to be applied to select those corners beyond a certain value. I will use the one in the documentation:
#--- create a black image to see where those corners occur ---
mask = np.zeros_like(gray)
#--- applying a threshold and turning those pixels above the threshold to white ---
mask[dst>0.01*dst.max()] = 255
cv2.imshow('mask', mask)
The white pixels are regions of possible corners. You can find many corners neighboring each other.
To draw the selected corners on the image:
img[dst > 0.01 * dst.max()] = [0, 0, 255] #--- [0, 0, 255] --> Red ---
cv2.imshow('dst', img)
(Red colored pixels are the corners, not so visible)
In order to get an array of all pixels with corners:
coordinates = np.argwhere(mask)
UPDATE
Variable coor is an array of arrays. Converting it to list of lists
coor_list = [l.tolist() for l in list(coor)]
Converting the above to list of tuples
coor_tuples = [tuple(l) for l in coor_list]
I have an easy and rather naive way to find the 4 corners. I simply calculated the distance of each corner to every other corner. I preserved those corners whose distance exceeded a certain threshold.
Here is the code:
thresh = 50
def distance(pt1, pt2):
(x1, y1), (x2, y2) = pt1, pt2
dist = math.sqrt( (x2 - x1)**2 + (y2 - y1)**2 )
return dist
coor_tuples_copy = coor_tuples
i = 1
for pt1 in coor_tuples:
print(' I :', i)
for pt2 in coor_tuples[i::1]:
print(pt1, pt2)
print('Distance :', distance(pt1, pt2))
if(distance(pt1, pt2) < thresh):
coor_tuples_copy.remove(pt2)
i+=1
Prior to running the snippet above coor_tuples had all corner points:
[(4, 42),
(4, 43),
(5, 43),
(5, 44),
(6, 44),
(7, 219),
(133, 36),
(133, 37),
(133, 38),
(134, 37),
(135, 224),
(135, 225),
(136, 225),
(136, 226),
(137, 225),
(137, 226),
(137, 227),
(138, 226)]
After running the snippet I was left with 4 corners:
[(4, 42), (7, 219), (133, 36), (135, 224)]
UPDATE 2
Now all you have to do is just mark these 4 points on a copy of the original image.
img2 = img.copy()
for pt in coor_tuples:
cv2.circle(img2, tuple(reversed(pt)), 3, (0, 0, 255), -1)
cv2.imshow('Image with 4 corners', img2)
Here's an implementation using cv2.goodFeaturesToTrack() to detect corners. The approach is
Convert image to grayscale
Perform canny edge detection
Detect corners
Optionally perform 4-point perspective transform to get top-down view of image
Using this starting image,
After converting to grayscale, we perform canny edge detection
Now that we have a decent binary image, we can use cv2.goodFeaturesToTrack()
corners = cv2.goodFeaturesToTrack(canny, 4, 0.5, 50)
For the parameters, we give it the canny image, set the maximum number of corners to 4 (maxCorners), use a minimum accepted quality of 0.5 (qualityLevel), and set the minimum possible Euclidean distance between the returned corners to 50 (minDistance). Here's the result
Now that we have identified the corners, we can perform a 4-point perspective transform to obtain a top-down view of the object. We first order the points clockwise then draw the result onto a mask.
Note: We could have just found contours on the Canny image instead of doing this step to create the mask, but pretend we only had the 4 corner points to work with
Next we find contours on this mask and filter using cv2.arcLength() and cv2.approxPolyDP(). The idea is that if the contour has 4 points, then it must be our object. Once we have this contour, we perform a perspective transform
Finally we rotate the image depending on the desired orientation. Here's the result
Code for only detecting corners
import cv2
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 120, 255, 1)
corners = cv2.goodFeaturesToTrack(canny,4,0.5,50)
for corner in corners:
x,y = corner.ravel()
cv2.circle(image,(x,y),5,(36,255,12),-1)
cv2.imshow('canny', canny)
cv2.imshow('image', image)
cv2.waitKey()
Code for detecting corners and performing perspective transform
import cv2
import numpy as np
def rotate_image(image, angle):
# Grab the dimensions of the image and then determine the center
(h, w) = image.shape[:2]
(cX, cY) = (w / 2, h / 2)
# grab the rotation matrix (applying the negative of the
# angle to rotate clockwise), then grab the sine and cosine
# (i.e., the rotation components of the matrix)
M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
# Compute the new bounding dimensions of the image
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
# Adjust the rotation matrix to take into account translation
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
# Perform the actual rotation and return the image
return cv2.warpAffine(image, M, (nW, nH))
def order_points_clockwise(pts):
# sort the points based on their x-coordinates
xSorted = pts[np.argsort(pts[:, 0]), :]
# grab the left-most and right-most points from the sorted
# x-roodinate points
leftMost = xSorted[:2, :]
rightMost = xSorted[2:, :]
# now, sort the left-most coordinates according to their
# y-coordinates so we can grab the top-left and bottom-left
# points, respectively
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
(tl, bl) = leftMost
# now, sort the right-most coordinates according to their
# y-coordinates so we can grab the top-right and bottom-right
# points, respectively
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
(tr, br) = rightMost
# return the coordinates in top-left, top-right,
# bottom-right, and bottom-left order
return np.array([tl, tr, br, bl], dtype="int32")
def perspective_transform(image, corners):
def order_corner_points(corners):
# Separate corners into individual points
# Index 0 - top-right
# 1 - top-left
# 2 - bottom-left
# 3 - bottom-right
corners = [(corner[0][0], corner[0][1]) for corner in corners]
top_r, top_l, bottom_l, bottom_r = corners[0], corners[1], corners[2], corners[3]
return (top_l, top_r, bottom_r, bottom_l)
# Order points in clockwise order
ordered_corners = order_corner_points(corners)
top_l, top_r, bottom_r, bottom_l = ordered_corners
# Determine width of new image which is the max distance between
# (bottom right and bottom left) or (top right and top left) x-coordinates
width_A = np.sqrt(((bottom_r[0] - bottom_l[0]) ** 2) + ((bottom_r[1] - bottom_l[1]) ** 2))
width_B = np.sqrt(((top_r[0] - top_l[0]) ** 2) + ((top_r[1] - top_l[1]) ** 2))
width = max(int(width_A), int(width_B))
# Determine height of new image which is the max distance between
# (top right and bottom right) or (top left and bottom left) y-coordinates
height_A = np.sqrt(((top_r[0] - bottom_r[0]) ** 2) + ((top_r[1] - bottom_r[1]) ** 2))
height_B = np.sqrt(((top_l[0] - bottom_l[0]) ** 2) + ((top_l[1] - bottom_l[1]) ** 2))
height = max(int(height_A), int(height_B))
# Construct new points to obtain top-down view of image in
# top_r, top_l, bottom_l, bottom_r order
dimensions = np.array([[0, 0], [width - 1, 0], [width - 1, height - 1],
[0, height - 1]], dtype = "float32")
# Convert to Numpy format
ordered_corners = np.array(ordered_corners, dtype="float32")
# Find perspective transform matrix
matrix = cv2.getPerspectiveTransform(ordered_corners, dimensions)
# Return the transformed image
return cv2.warpPerspective(image, matrix, (width, height))
image = cv2.imread('1.png')
original = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
canny = cv2.Canny(gray, 120, 255, 1)
corners = cv2.goodFeaturesToTrack(canny,4,0.5,50)
c_list = []
for corner in corners:
x,y = corner.ravel()
c_list.append([int(x), int(y)])
cv2.circle(image,(x,y),5,(36,255,12),-1)
corner_points = np.array([c_list[0], c_list[1], c_list[2], c_list[3]])
ordered_corner_points = order_points_clockwise(corner_points)
mask = np.zeros(image.shape, dtype=np.uint8)
cv2.fillPoly(mask, [ordered_corner_points], (255,255,255))
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.015 * peri, True)
if len(approx) == 4:
transformed = perspective_transform(original, approx)
result = rotate_image(transformed, -90)
cv2.imshow('canny', canny)
cv2.imshow('image', image)
cv2.imshow('mask', mask)
cv2.imshow('transformed', transformed)
cv2.imshow('result', result)
cv2.waitKey()
find contours with RETR_EXTERNAL option.(gray -> gaussian filter -> canny edge -> find contour)
find the largest size contour -> this will be the edge of the rectangle
find corners with little calculation
Mat m;//image file
findContours(m, contours_, hierachy_, RETR_EXTERNAL);
auto it = max_element(contours_.begin(), contours_.end(),
[](const vector<Point> &a, const vector<Point> &b) {
return a.size() < b.size(); });
Point2f xy[4] = {{9000,9000}, {0, 1000}, {1000, 0}, {0,0}};
for(auto &[x, y] : *it) {
if(x + y < xy[0].x + xy[0].y) xy[0] = {x, y};
if(x - y > xy[1].x - xy[1].y) xy[1] = {x, y};
if(y - x > xy[2].y - xy[2].x) xy[2] = {x, y};
if(x + y > xy[3].x + xy[3].y) xy[3] = {x, y};
}
xy[4] will be the four corners.
I was able to extract four corners this way.
Apply houghlines to the canny image - you will get a list of points
apply convex hull to this set of points

Resources