Searching/predicting next terminal/non-terminal by CFG/Tree? - parsing

I'm looking for algorithm to help me predict next token given a string/prefix and Context free grammar.
First question is what is the exact structure representing CFG. It seems it is a tree, but what type of tree ? I'm asking because the leaves are always ordered , is there a ordered-tree ?
May be if i know the correct structure I can find algorithm for bottom-up search !
If it is not exactly a Search problem, then the next closest thing it looks like Parsing the prefix-string and then Generating the next-token ? How do I do that ?
any ideas
my current generated grammar is simple it has no OR rules (except when i decide to reuse the grammar for new sequences, i will be). It is generated by Sequitur algo and is so called SLG(single line grammar) .. but if I generate it using many seq's the TOP rule will be Ex:>
S : S1 z S3 | u S2 .. S5 S1 | S4 S2 .. |... | Sn
S1 : a b
S2 : h u y
...
..i.e. top-heavy SLG, except the top rule all others do not have OR |
As a side note I'm thinking of a ways to convert it to Prolog and/or DCG program, where may be there is easier way to do what I want easily ?! what do you think ?

TL;DR: In abstract, this is a hard problem. But it can be pretty simple for given grammars. Everything depends on the nature of the grammar.
The basic algorithm indeed starts by using some parsing algorithm on the prefix. A rough prediction can then be made by attempting to continue the parse with each possible token, retaining only those which do not produce immediate errors.
That will certainly give you a list which includes all of the possible continuations. But the list may also include tokens which cannot appear in a correct input. Indeed, it is possible that the correct list is empty (because the given prefix is not the prefix of any correct input); this will happen if the parsing algorithm is unable to correctly verify whether a token sequence is a possible prefix.
In part, this will depend on the grammar itself. If the grammar is LR(1), for example, then the LR(1) parsing algorithm can precisely identify the continuation set. If the grammar is LR(k) for some k>1, then it is theoretically possible to produce an LR(1) grammar for the same language, but the resulting grammar might be impractically large. Otherwise, you might have to settle for "false positives". That might be acceptable if your goal is to provide tab-completion, but in other circumstances it might not be so useful.
The precise datastructure used to perform the internal parse and exploration of alternatives will depend on the parsing algorithm used. Many parsing algorithms, including the standard LR parsing algorithm whose internal data structure is a simple stack, feature a mutable internal state which is not really suitable for the exploration step; you could adapt such an algorithm by making a copy of the entire internal data structure (that is, the stack) before proceeding with each trial token. Alternatively, you could implement a copy-on-write stack. But the parser stack is not usually very big, so copying it each time is generally feasible. (That's what Bison does to produce expanded error messages with an "expected token" list, and it doesn't seem to trigger unacceptable runtime overhead in practice.)
Alternatively, you could use some variant of CYK chart parsing (or a GLR algorithm like the Earley algorithm), whose internal data structures can be implemented in a way which doesn't involve destructive modification. Such algorithms are generally used for grammars which are not LR(1), since they can cope with any CFG although highly ambiguous grammars can take a long time to parse (proportional to the cube of the input length). As mentioned above, though, you will get false positives from such algorithms.
If false positives are unacceptable, then you could use some kind of heuristic search to attempt to find an input sequence which completes the trial prefix. This can in theory take quite a long time, but for many grammars a breadth-first search can find a completion within a reasonable time, so you could terminate the search after a given maximum time. This will not produce false positives, but the time limit might prevent it from finding the complete set of possible continuations.

Related

simplify equations/expressions using Javacc/jjtree

I have created a grammar to read a file of equations then created AST nodes for each rule.My question is how can I do simplification or substitute vales on the equations that the parser is able to read correctly. in which stage? before creating AST nodes or after?
Please provide me with ideas or tutorials to follow.
Thank you.
I'm assuming you equations are something like simple polynomials over real-value variables, like X^2+3*Y^2
You ask for two different solutions to two different problems that start with having an AST for at least one equation:
How to "substitute values" into the equation and compute the resulting value, e.g, for X==3 and Y=2, substitute into the AST for the formula above and compute 3^2+3*2^2 --> 21
How to do simplification: I assume you mean algebraic simplification.
The first problem of substituting values is fairly easy if yuo already have the AST. (If not, parse the equation to produce the AST first!) Then all you have to do is walk the AST, replacing every leaf node containing a variable name with the corresponding value, and then doing arithmetic on any parent nodes whose children now happen to be numbers; you repeat this until no more nodes can be arithmetically evaluated. Basically you wire simple arithmetic into a tree evaluation scheme.
Sometimes your evaluation will reduce the tree to a single value as in the example, and you can print the numeric result My SO answer shows how do that in detail. You can easily implement this yourself in a small project, even using JavaCC/JJTree appropriately adapted.
Sometimes the formula will end up in a state where no further arithmetic on it is possible, e.g., 1+x+y with x==0 and nothing known about y; then the result of such a subsitution/arithmetic evaluation process will be 1+y. Unfortunately, you will only have this as an AST... now you need to print out the resulting AST in order for the user to see the result. This is harder; see my SO answer on how to prettyprint a tree. This is considerably more work; if you restrict your tree to just polynomials over expressions, you can still do this in small project. JavaCC will help you with parsing, but provides zero help with prettyprinting.
The second problem is much harder, because you must not only accomplish variable substitution and arithmetic evaluation as above, but you have to somehow encode knowledge of algebraic laws, and how to match those laws to complex trees. You might hardwire one or two algebraic laws (e.g., x+0 -> x; y-y -> 0) but hardwiring many laws this way will produce an impossible mess because of how they interact.
JavaCC might form part of such an answer, but only a small part; the rest of the solution is hard enough so you are better off looking for an alternative rather than trying to build it all on top of JavaCC.
You need a more organized approach for this: a Program Transformation System (PTS). A typical PTS will allow you specify
a grammar for an arbitrary language (in your case, simply polynomials),
automatically parses instance to ASTs and can regenerate valid text from the AST. A good PTS will let you write source-to-source transformation rules that the PTS will apply automatically the instance AST; in your case you'd write down the algebraic laws as source-to-source rules and then the PTS does all the work.
An example is too long to provide here. But here I describe how to define formulas suitable for early calculus classes, and how to define algebraic rules that simply such formulas including applying some class calculus derivative laws.
With sufficient/significant effort, you can build your own PTS on top of JavaCC/JJTree. This is likely to take a few man-years. Easier to get a PTS rather than repeat all that work.

How to read through an LL parsing ?

I read that the LL parser is a Top down parser. So logically I suppose that we read throughout from the top to the down.
However, there's many way for read from the top to the down.
I found on wikipedia a page which talk about the depth first which speak of the course in an tree data structure (binary tree).
Otherwise, there is 3 kind of depth first: Pre-order, In-order, Post-order.
In my mind, I suppose that I need to use the Post-order one but how to be sure ?
how to know which kind of depth first need I to use for the LL parsing ?
depth first : https://en.wikipedia.org/wiki/Tree_traversal
Thank's
There's usually an infinite number of ways to traverse a grammar, just like there's an infinite number of possible inputs that adhere to the grammar.
When you walk the grammar you typically don't do it like you would a traditional tree or graph structure. Rather, your walk is dictated by an input stream of tokens coming from the lexer.
E.g. if you find yourself at a place in the grammar where it has has a production where either an identifier or an integer literal may occur, the branch taken is dictated by whether the current token is one or the other (or something else, which would then be a syntax error for that input).

Why parser-generators instead of just configurable-parsers?

The title sums it up. Presumably anything that can be done with source-code-generating parser-generators (which essentially hard-code the grammar-to-be-parsed into the program) can be done with a configurable parser (which would maintain the grammar-to-be-parsed soft-coded as a data structure).
I suppose the hard-coded code-generated-parser will have a performance bonus with one less level of indirection, but the messiness of having to compile and run it (or to exec() it in dynamic languages) and the overall clunkiness of code-generation seems quite a big downside. Are there any other benefits of code-generating your parsers that I'm not aware of?
Most of the places I see code generation used is to work around limitations in the meta-programming ability of the languages (i.e. web frameworks, AOP, interfacing with databases), but the whole lex-parse thing seems pretty straightforward and static, not needing any of the extra metaprogramming dynamism that you get from code-generation. What gives? Is the performance benefit that great?
If all you want is a parser that you can configure by handing it grammar rules, that can be accomplished. An Earley parser will parse any context-free language given just a set of rules. The price is significant execution time: O(N^3), where N is the length of the input. If N is large (as it is for many parseable entities), you can end with Very Slow parsing.
And this is the reason for a parser generator (PG). If you parse a lot of documents, Slow Parsing is bad news. Compilers are one program where people parse a lot of documents, and no programmer (or his manager) wants the programmer waiting for the compiler. There's lots of other things to parse: SQL querys, JSON documents, ... all of which have this "Nobody is willing to wait" property.
What PGs do is to take many decisions that would have to occur at runtime (e.g., for an Earley parser), and precompute those results at parser-generation time. So an LALR(1) PG (e.g., Bison) will produce parsers that run in O(N) time, and that's obviously a lot faster in practical circumstances. (ANTLR does something similar for LL(k) parsers). If you want full context free parsing that is usually linear, you can use a variant of LR parsing called GLR parsing; this buys you the convienience of an "configurable" (Earley) parser, with much better typical performance.
This idea of precomputing in advance is generally known as partial evaluation, that is, given a function F(x,y), and knowledge that x is always a certain constant x_0, compute a new function F'(y)=F(x0,y) in which decisions and computations solely dependent on the value of x are precomputed. F' usually runs a lot faster than F. In our case, F is something like generic parsing (e.g., an Earley parser), x is a grammar argument with x0 being a specific grammar, and F' is some parser infrastructure P and additional code/tables computed by the PG such that F'=PG(x)+P.
In the comments to your question, there seems to be some interest in why one doesn't just run the parser generator in effect at runtime. The simple answer is, it pays a significant part of the overhead cost you want to get rid of at runtime.

Implementing "*?" (lazy "*") regexp pattern in combinatorial GLR parsers

I have implemented combinatorial GLR parsers. Among them there are:
char(·) parser which consumes specified character or range of characters.
many(·) combinator which repeats specified parser from zero to infinite times.
Example: "char('a').many()" will match a string with any number of "a"-s.
But many(·) combinator is greedy, so, for example, char('{') >> char('{') >> char('a'..'z').many() >> char('}') >> char('}') (where ">>" is sequential chaining of parsers) will successfully consume the whole "{{foo}}some{{bar}}" string.
I want to implement the lazy version of many(·) which, being used in previous example, will consume "{{foo}}" only. How can I do that?
Edit:
May be I confused ya all. In my program a parser is a function (or "functor" in terms of C++) which accepts a "step" and returns forest of "steps". A "step" may be of OK type (that means that parser has consumed part of input successfully) and FAIL type (that means the parser has encountered error). There are more types of steps but they are auxiliary.
Parser = f(Step) -> Collection of TreeNodes of Steps.
So when I parse input, I:
Compose simple predefined Parser functions to get complex Parser function representing required grammar.
Form initial Step from the input.
Give the initial Step to the complex Parser function.
Filter TreeNodes with Steps, leaving only OK ones (or with minimum FAIL-s if there were errors in input).
Gather information from Steps which were left.
I have implemented and have been using GLR parsers for 15 years as language front ends for a program transformation system.
I don't know what a "combinatorial GLR parser" is, and I'm unfamiliar with your notation so I'm not quite sure how to interpret it. I assume this is some kind of curried function notation? I'm imagining your combinator rules are equivalent to definining a grammer in terms of terminal characters, where "char('a').many" corresponds to grammar rules:
char = "a" ;
char = char "a" ;
GLR parsers, indeed, produce all possible parses. The key insight to GLR parsing is its psuedo-parallel processing of all possible parses. If your "combinators" can propose multiple parses (that is, they produce grammar rules sort of equivalent to the above), and you indeed have them connected to a GLR parser, they will all get tried, and only those sequences of productions that tile the text will survive (meaning all valid parsess, e.g., ambiguous parses) will survive.
If you have indeed implemented a GLR parser, this collection of all possible parses should have been extremely clear to you. The fact that it is not hints what you have implemented is not a GLR parser.
Error recovery with a GLR parser is possible, just as with any other parsing technology. What we do is keep the set of live parses before the point of the error; when an error is found, we try (in psuedo-parallel, the GLR parsing machinery makes this easy if it it bent properly) all the following: a) deleting the offending token, b) inserting all tokens that essentially are FOLLOW(x) where x is live parse. In essence, delete the token, or insert one expected by a live parse. We then turn the GLR parser loose again. Only the valid parses (e.g., repairs) will survive. If the current token cannot be processed, the parser processing the stream with the token deleted survives. In the worst case, the GLR parser error recovery ends up throwing away all tokens to EOF. A serious downside to this is the GLR parser's running time grows pretty radically while parsing errors; if there are many in one place, the error recovery time can go through the roof.
Won't a GLR parser produce all possible parses of the input? Then resolving the ambiguity is a matter of picking the parse you prefer. To do that, I suppose the elements of the parse forest need to be labeled according to what kind of combinator produced them, eager or lazy. (You can't resolve the ambiguity incrementally before you've seen all the input, in general.)
(This answer based on my dim memory and vague possible misunderstanding of GLR parsing. Hopefully someone expert will come by.)
Consider the regular expression <.*?> and the input <a>bc<d>ef. This should find <a>, and no other matches, right?
Now consider the regular expression <.*?>e with the same input. This should find <a>bc<d>e, right?
This poses a dilemma. For the user's sake, we want the behavior of the combinator >> to be understood in terms of its two operands. Yet there is no way to produce the second parser's behavior in terms of what the first one finds.
One answer is for each parser to produce a sequence of all parses, ordered by preference, rather than the unordered set of all parsers. Greedy matching would return matches sorted longest to shortest; non-greedy, shortest to longest.
Non-greedy functionality is nothing more than a disambiguation mechanism. If you truly have a generalized parser (which does not require disambiguation to produce its results), then "non-greedy" is meaningless; the same results will be returned whether or not an operator is "non-greedy".
Non-greedy disambiguation behavior could be applied to the complete set of results provided by a generalized parser. Working left-to-right, filter the ambiguous sub-groups corresponding to a non-greedy operator to use the shortest match which still led to a successful parse of the remaining input.

Parsing rules - how to make them play nice together

So I'm doing a Parser, where I favor flexibility over speed, and I want it to be easy to write grammars for, e.g. no tricky workaround rules (fake rules to solve conflicts etc, like you have to do in yacc/bison etc.)
There's a hand-coded Lexer with a fixed set of tokens (e.g. PLUS, DECIMAL, STRING_LIT, NAME, and so on) right now there are three types of rules:
TokenRule: matches a particular token
SequenceRule: matches an ordered list of rules
GroupRule: matches any rule from a list
For example, let's say we have the TokenRule 'varAccess', which matches token NAME (roughly /[A-Za-z][A-Za-z0-9_]*/), and the SequenceRule 'assignment', which matches [expression, TokenRule(PLUS), expression].
Expression is a GroupRule matching either 'assignment' or 'varAccess' (the actual ruleset I'm testing with is a bit more complete, but that'll do for the example)
But now let's say I want to parse
var1 = var2
And let's say the Parser begins with rule Expression (the order in which they are defined shouldn't matter - priorities will be solved later). And let's say the GroupRule expression will first try 'assignment'. Then since 'expression' is the first rule to be matched in 'assignment', it will try to parse an expression again, and so on until the stack is filled up and the computer - as expected - simply gives up in a sparkly segfault.
So what I did is - SequenceRules add themselves as 'leafs' to their first rule, and become non-roôt rules. Root rules are rules that the parser will first try. When one of those is applied and matches, it tries to subapply each of its leafs, one by one, until one matches. Then it tries the leafs of the matching leaf, and so on, until nothing matches anymore.
So that it can parse expressions like
var1 = var2 = var3 = var4
Just right =) Now the interesting stuff. This code:
var1 = (var2 + var3)
Won't parse. What happens is, var1 get parsed (varAccess), assign is sub-applied, it looks for an expression, tries 'parenthesis', begins, looks for an expression after the '(', finds var2, and then chokes on the '+' because it was expecting a ')'.
Why doesn't it match the 'var2 + var3' ? (and yes, there's an 'add' SequenceRule, before you ask). Because 'add' isn't a root rule (to avoid infinite recursion with the parse-expresssion-beginning-with-expression-etc.) and that leafs aren't tested in SequenceRules otherwise it would parse things like
reader readLine() println()
as
reader (readLine() println())
(e.g. '1 = 3' is the expression expected by add, the leaf of varAccess a)
whereas we'd like it to be left-associative, e.g. parsing as
(reader readLine()) println()
So anyway, now we've got this problem that we should be able to parse expression such as '1 + 2' within SequenceRules. What to do? Add a special case that when SequenceRules begin with a TokenRule, then the GroupRules it contains are tested for leafs? Would that even make sense outside that particular example? Or should one be able to specify in each element of a SequenceRule if it should be tested for leafs or not? Tell me what you think (other than throw away the whole system - that'll probably happen in a few months anyway)
P.S: Please, pretty please, don't answer something like "go read this 400pages book or you don't even deserve our time" If you feel the need to - just refrain yourself and go bash on reddit. Okay? Thanks in advance.
LL(k) parsers (top down recursive, whether automated or written by hand) require refactoring of your grammar to avoid left recursion, and often require special specifications of lookahead (e.g. ANTLR) to be able to handle k-token lookahead. Since grammars are complex, you get to discover k by experimenting, which is exactly the thing you wish to avoid.
YACC/LALR(1) grammars aviod the problem of left recursion, which is a big step forward. The bad news is that there are no real programming langauges (other than Wirth's original PASCAL) that are LALR(1). Therefore you get to hack your grammar to change it from LR(k) to LALR(1), again forcing you to suffer the experiments that expose the strange cases, and hacking the grammar reduction logic to try to handle K-lookaheads when the parser generators (YACC, BISON, ... you name it) produce 1-lookahead parsers.
GLR parsers (http://en.wikipedia.org/wiki/GLR_parser) allow you to avoid almost all of this nonsense. If you can write a context free parser, under most practical circumstances, a GLR parser will parse it without further effort. That's an enormous relief when you try to write arbitrary grammars. And a really good GLR parser will directly produce a tree.
BISON has been enhanced to do GLR parsing, sort of. You still have to write complicated logic to produce your desired AST, and you have to worry about how to handle failed parsers and cleaning up/deleting their corresponding (failed) trees. The DMS Software Reengineering Tookit provides standard GLR parsers for any context free grammar, and automatically builds ASTs without any additional effort on your part; ambiguous trees are automatically constructed and can be cleaned up by post-parsing semantic analyis. We've used this to do define 30+ language grammars including C, including C++ (which is widely thought to be hard to parse [and it is almost impossible to parse with YACC] but is straightforward with real GLR); see C+++ front end parser and AST builder based on DMS.
Bottom line: if you want to write grammar rules in a straightforward way, and get a parser to process them, use GLR parsing technology. Bison almost works. DMs really works.
My favourite parsing technique is to create recursive-descent (RD) parser from a PEG grammar specification. They are usually very fast, simple, and flexible. One nice advantage is you don't have to worry about separate tokenization passes, and worrying about squeezing the grammar into some LALR form is non-existent. Some PEG libraries are listed [here][1].
Sorry, I know this falls into throw away the system, but you are barely out of the gate with your problem and switching to a PEG RD parser, would just eliminate your headaches now.

Resources