I have been given matrices filled with alphanumerical values excluding lower case letters like so:
XX11X1X
XX88X8X
Y000YYY
ZZZZ789
ABABABC
and have been tasked with counting the repetitions in each row and then tallying up a score depending on the ranking of the character being repeated. I used {⍺ (≢⍵)}⌸¨ ↓ m to help me. For the example above I would get something like this:
X 4 X 4 Y 4 Z 4 A 3
1 3 8 3 0 3 7 1 B 3
8 1 C 1
9 1
This is great but now I need to do a function that would be able to multiply the numbers with each letter. I can access the first matrix with ⊃ but then I am completely lost on how to access the other ones. I can simply write ⊃w[2] and ⊃w[3] and so forth but I need a way to change every matrix at the same time in one function. For this example, the array of the ranking is as follow: ZYXWVUTSRQPONMLKJIHGFEDCBA9876543210 so for the first array XX11X1X
which corresponds to:
X 4
1 3
So the X is 3rd in the array so it corresponds to a 3 and 1 is 35th so it's a 35. The final scoring would be something like (3×104)+(35×103). My biggest problem is not necessarily the scoring part but being able to access each matrix individually in one function. So for this nested array:
X 4 X 4 Y 4 Z 4 A 3
1 3 8 3 0 3 7 1 B 3
8 1 C 1
9 1
if I do arr[1] it gives me the scalar
X 4
1 3
and ⍴ arr[1] gives me nothing confirming it so I can do ⊃arr[1] to get the matrix itself and have access to each column individually. This is where I'm stuck. I'm trying to write a function to be able to do the math for each matrix and then saving those results to an array. I can easily do the math for the first matrix but I can't do it for all of them. I might have made a mistake by making using {⍺ (≢⍵)}⌸¨ ↓ m to get those matrices. Thanks.
Using your example arrangement:
⎕ ← arranged ← ⌽ ⎕D , ⎕A
ZYXWVUTSRQPONMLKJIHGFEDCBA9876543210
So now, we can get the index values:
1 ⌷ m
XX11X1X
∪ 1 ⌷ m
X1
arranged ⍳ ∪ 1 ⌷ m
3 35
While you could compute the intermediary step first, it is much simpler to include most of the final formula in in Key's operand:
{ ( arranged ⍳ ⍺ ) × 10 * ≢⍵ }⌸¨ ↓m
┌───────────┬───────────┬───────────┬─────────────────┬───────────────┐
│30000 35000│30000 28000│20000 36000│10000 290 280 270│26000 25000 240│
└───────────┴───────────┴───────────┴─────────────────┴───────────────┘
Now we just need to sum each:
+/¨ { ( arranged ⍳ ⍺ ) × 10 * ≢⍵ }⌸¨ ↓m
65000 58000 56000 10840 51240
In fact, we can combine the summation with the application of Key to avoid a double loop:
{ +/ { ( arranged ⍳ ⍺ ) × 10 * ≢⍵ }⌸ ⍵}¨ ↓m
65000 58000 56000 10840 51240
For completeness, here is a way to use the intermediary result. Let's start by working on just the first matrix (you can get the second one with 2⊃ instead of ⊃ ― for details, see Problems when trying to use arrays in APL. What have I missed?):
⊃{⍺ (≢⍵)}⌸¨ ↓m
X 4
1 3
We can insert a function between the left column elements and the right column elements with reduction:
{⍺ 'foo' ⍵}/ ⊃{⍺ (≢⍵)}⌸¨ ↓m
┌─────────┬─────────┐
│┌─┬───┬─┐│┌─┬───┬─┐│
││X│foo│4│││1│foo│3││
│└─┴───┴─┘│└─┴───┴─┘│
└─────────┴─────────┘
So now we simply have to modify the placeholder function with one that looks up the left argument in the arranged items, and multiplies by ten to the power of the right argument:
{ ( arranged ⍳ ⍺ ) × 10 * ⍵ }/ ⊃{⍺ (≢⍵)}⌸¨ ↓m
30000 35000
Instead of applying this to only the first matrix, we apply it to each matrix:
{ ( arranged ⍳ ⍺ ) × 10 * ⍵ }/¨ {⍺ (≢⍵)}⌸¨ ↓m
┌───────────┬───────────┬───────────┬─────────────────┬───────────────┐
│30000 35000│30000 28000│20000 36000│10000 290 280 270│26000 25000 240│
└───────────┴───────────┴───────────┴─────────────────┴───────────────┘
Now we just need to sum each:
+/¨ { ( arranged ⍳ ⍺ ) × 10 * ⍵ }/¨ {⍺ (≢⍵)}⌸¨ ↓m
65000 58000 56000 10840 51240
However, this is a much more circuitous approach, and is only provided here for reference.
Related
Is it possible to perform an arbitrary calculation (eg. A2*B2) on a set of rows and obtain the cumulative sum along the way using ARRAYFORMULA? For example, in the following sheet we have numbers (column A), multipliers (column B), the result of multiplying them (column C), and a cumulative tally (column D):
| A B C D E F
-------------------------------------------------------------------------------
1 | number multiplier result cumulative array formula array formula sum?
2 | 3 4 12 12 12
3 | 2 4 8 20 8
4 | 10 1 10 30 10
5 | 7 9 63 93 63
I can use ARRAYFORMULA in cell E2 (specifically, ARRAYFORMULA(A2:A5*B2:B5)) to do the multiplication. Is it possible to use ARRAYFORMULA (or alternative tool) in cell F2 to show the cumulative total?
use:
=ARRAYFORMULA(IF(A2:A="",,MMULT(TRANSPOSE((ROW(A2:A)<=
TRANSPOSE(ROW(A2:A)))*A2:A*B2:B), SIGN(B2:B))))
Calculate the cumulative sum with the SCAN and LAMBDA functions:
=SCAN(0, F5:F, LAMBDA(accumulated_value, cell_value, accumulated_value + cell_value))
This will run faster as it runs with linear complexity (O(N)) compared to the ARRAYFORMULA solution, which runs in quadratic time (O(N**2)).
Where:
0 is the initial value of the cumulative sum
F5:F is the range to sum over
LAMBDA(accumulated_value, cell_value, accumulated_value + cell_value)) is the function that calculates the sum at each cell
Sample File
I want to group 100 users based on a categorical variable (which can be low, medium, or high). The group size should be 3. I want to get the maximal heterogeneity within groups, assuming that users are distributed equally. I wonder if I can use some clustering algorithm to group based on the dissimilarity? Any suggestions?
I don't believe you need a clustering algorithm to group the data based upon a categorical variable.
Based on you question, I think this should work.
# Code
from sklearn.model_selection import train_test_split
group1, group23 = train_test_split(data, test_size=2/3., stratify=data['lab'])
group2, group3 = train_test_split(group23, test_size=1/2., stratify=group23['lab'])
Stratify makes sure that the maximum heterogeneity is maintained for the given categorical value.
# Sample output
print(data)
val1 val2 lab
0 1 1 L
1 2 2 L
2 3 3 L
3 4 4 M
4 5 5 M
5 6 6 M
6 7 7 H
7 8 8 H
8 9 9 H
print(group1)
val1 val2 lab
4 5 5 M
1 2 2 L
6 7 7 H
print(group2)
val1 val2 lab
8 9 9 H
2 3 3 L
3 4 4 M
print(group3)
val1 val2 lab
0 1 1 L
7 8 8 H
5 6 6 M
train_test_split() Documentation
Example
3 2 5 5
a b c d
Joining first two
5 | 5 5
3 2 | c d
a b |
I have to put the new tree of five into the queue
Am I obligated to put it in the end like this:
5 5 5
c d / \
3 2
a b
Or can I put it in the beginning:
5 5 5
3 2 c d
a b
Or even in the middle of 'c' and 'd'
Is it my choice or is there a rule?
It's not your choice, the Queue needs to be sorted at all times (by it's number of occurrences and in case of equal number of occurrences by the depth of the tree). So it needs to be inserted where it belongs into the order.
This is needed to pick the sub-trees with the least amount of occurrences and if there is choice the most shallow one of them by simply pop-ing them.
If you simply resort after every insertion (this is inefficient and should not be done) the position obviously doesn't matter.
Yes, it's your choice. Whichever way you will get an optimal Huffman code, even though two resulting codes can be manifestly different.
You can get:
a - 00
b - 01
c - 10
d - 11
or you can get:
a - 111
b - 110
c - 10
d - 0
Now if I multiply the number of bits in each symbol times the number of occurrences, I get for the first code: 2*3 + 2*2 + 2*5 + 2*5 = 30 bits. For the second code: 3*3 + 3*2 + 2*5 + 1*5 = 30 bits. So both codes will code the original message to exactly 30 bits.
I have searched for an Octave function that facilitates conditional merging of matrices but haven't one so far. My goal is to do this using vectors without looping. Here is an example of what I am trying to do.
A= [1 1
2 2
3 1
5 2];
B= [1 9
2 10];
I would like to get C as
C= [1 1 9
2 2 10
3 1 9
5 2 10];
Is there a function that takes A, B and the list of column(s) to join on and then produce C?
You can use the second output of ismember to find the occurrences of the second column of A in the first column of B and then use that to grab specific entries from the second column of B to construct C.
[~, inds] = ismember(A(:,2), B(:,1));
C = [A, B(inds,2)];
%// 1 1 9
%// 2 2 10
%// 3 1 9
%// 5 2 10
I know that tensors have an apply method, but this only applies a function to each element. Is there an elegant way to do row-wise operations? For example, can I multiply each row by a different value?
Say
A =
1 2 3
4 5 6
7 8 9
and
B =
1
2
3
and I want to multiply each element in the ith row of A by the ith element of B to get
1 2 3
8 10 12
21 24 27
how would I do that?
See this link: Torch - Apply function over dimension
(Thanks to Alexander Lutsenko for providing it. I just moved it to the answer.)
One possibility is to expand B as follow:
1 1 1
2 2 2
3 3 3
[torch.DoubleTensor of size 3x3]
Then you can use element-wise multiplication directly:
local A = torch.Tensor{{1,2,3},{4,5,6},{7,8,9}}
local B = torch.Tensor{1,2,3}
local C = A:cmul(B:view(3,1):expand(3,3))