I have recently heard about sitespeed.io and started using it to measure performance of my site.
I am running it in a docker container on my gcp cloud instance.
The problem is everytime i run the command it stores the result in a particular directory sitespeed-result and then I need to copy the whole thing on my local windows machine to view index.html file.
Is it possible to run this on a server like apache? I mean for example I can run an apache container on my docker host but how do i map this sitespeed io result so that it can be available using http://my-gcp-instance:80 where my apache container is running on port 80.
sudo docker run -v "$(pwd)":/sitespeed.io sitespeedio/sitespeed.io:13.3.0 https://mywebsite.com
Sorry for posting thr question this but I got it working.
sudo docker run -dit --name my-apache -p 8080:80 -v "$(pwd)":/usr/local/apache2/htdocs/ httpd:2.4
(pwd) is where i am storing the sitespeed results.
Newbie question: I have splash running in a docker container and scrapy running on my local development machine. I now need to promote this to an AWS environment via docker containers, but I can't figure out how to connect the scrapy and splash containers?
I'm assuming that I need to create a docker stack, but that's as far as I've got :o(
It was really quite straightforward in the end.
docker network create crawler-network
docker run --network=crawler-network --name=splash --hostname=splash --memory=6GB --restart unless-stopped -d -p 8050:8050 scrapinghub/splash --max-timeout 600 --slots 10
docker run --network=crawler-network --name=crawler --hostname=crawler -it conda
docker network inspect crawler-network
Then we changed the scrapy splash settings to point to http://splash:8060, instead of http://localhost:8050
I'm new to docker.
I have an image that I want to run, but I want docker to see if that image is already running from another terminal...if it is running I don't want it to load another one...
is this something that can be done with docker?
if it helps, I'm running the docker with a privileged mode.
I've tried to search for singleton docker or something like that, but no luck.
updates-
1.working from ubuntu.
My scenario- from terminal X I run docker run Image_a
from terminal Y I run docker run Image_a
when trying to run from terminal Y, I want docker to check if there is already a docker running with Image_a, and the answer is true - I want docker not to run in terminal Y
You can use the following docker command to get all containers that running from specific image:
docker ps --filter ancestor="imagename:tag"
Example:
docker ps --filter ancestor="drone/drone:0.5"
Example Output:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
3fb00087d4c1 drone/drone:0.5 "/drone agent" 6 days ago Up 26 minutes 8000/tcp drone_drone-agent_1
This approach uses docker api and docker daemon, so it doesnt matter if the run command executed in background or other terminal.
Aother approach:
If you have a single container form a single image:
Try naming your containers, You cant have 2 containers with the same name:
docker run --name uniquecontainer Image_a
Next time you run the above command you will get an error. Btw consider using -d so you dont have to switch terminals.
docker run -d --name uniquecontainer Image_a
I'm brand new to both TeamCity and Docker. I'm struggling to get a Docker container with TeamCity running and usable on my local machine. I've tried several things, to no avail:
I installed Docker for Mac per instructions here. I then tried to run the following command, documented here, for setting up teamcity in docker:
docker run -it --name teamcity-server-instance \
-v c:\docker\data:/data/teamcity_server/datadir \
-v c:\docker\logs:/opt/teamcity/logs \
-p 8111:8111 \
jetbrains/teamcity-server
That returned the following error: docker: Error response from daemon: Invalid bind mount spec "c:dockerdata:/data/teamcity_server/datadir": invalid mode: /data/teamcity_server/datadir.
Taking a different tack, I tried to follow the instructions here - I tried running the following command:
docker run -it --name teamcity -p 8111:8111 sjoerdmulder/teamcity
The terminal indicated that it was starting up a web server, but I can't browse to it at localhost, nor at localhost:8111 (error ERR_SOCKET_NOT_CONNECTED without the port, and ERR_CONNECTION_REFUSED with the port).
Since the website with the docker run command says to install Docker via Docker Toolbox, I then installed that at the location they pointed to (here). I then tried the
docker-machine ip default
command they suggested, but it didn't work, error "Host does not exist: "default"". That makes sense, since the website said the "default" vm would be created by running Docker Quickstart and I didn't do that, but they don't provide any link to Docker Quickstart, so I don't know what they are talking about.
To try to get the IP address the container was running on, I tried this command
docker inspect --format='{{.Name}} - {{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' $(docker ps -aq)
That listed the names of the running containers, each followed by a hyphen, then nothing. I also tried
docker ps -a
That listed running contaners also, but didn't give the IP. Also, the port is blank, and the status says "exited (130) 4 minutes ago", so it doesn't seem like the container stayed alive after starting.
I also tried again with port 80, hoping that would make the site show at localhost:
docker run -it --name teamcity2 -p 80:80 sjoerdmulder/teamcity
So at this point, I'm completely puzzled and blocked - I can't start the server at all following the instructions on hub.docker.com, and I can't figure out how to browse to the site that does start up with the other instructions.
I'll be very grateful for any assistance!
JetBrains now provides official docker images for TeamCity. I would recommend starting with those.
The example command in their TeamCity server image looks like this
docker run -it --name teamcity-server-instance \
-v <path to data directory>:/data/teamcity_server/datadir \
-v <path to logs directory>:/opt/teamcity/logs \
-p <port on host>:8111 \
jetbrains/teamcity-server
That looks a lot like your first attempt. However, c:\docker\data is a Windows file path. You said you're running this on a mac, so that's definitely not going to work.
Once TeamCity starts, it should be available on port 8111. That's what -p 8111:8111 part of the command does. It maps port 8111 on your machine to port 8111 in the VM Docker for Mac creates to run your containers. ERR_CONNECTION_REFUSED could be caused by several things. Two most likely possibilities are
TeamCity could take a little while to start up and maybe you didn't give it enough time. Solution is to wait.
-it would start the TeamCity container in interactive mode. If you exit out of the terminal window where you ran the command, the container will also probably terminate and will be inaccessible. Solution is to not close the window or run the container in detached mode.
There is a good overview of the differences between Docker for Mac and Docker Toolbox here: Docker for Mac vs. Docker Toolbox. You don't need both, and for most cases you'll want to use Docker for Mac for testing stuff out locally.
I've installed the tensorflow docker container on an ubuntu machine. The tensorflow docker setup instructions specify:
docker run -it b.gcr.io/tensorflow/tensorflow
This puts me into the docker container terminal, and I can run python and execute the Hello World example. I can also manually run .\run_jupyter.sh to start the jupyter notebook. However, I can't reach the notebook from host.
How do I start the jupyter notebook such that I can use the notebook from the host machine? Ideally I would like to use docker to launch the container and start jupyter in a single command.
For a Linux host Robert Graves answer will work, but for Mac OS X or Windows there is more to be done because docker runs in a virtual machine.
So to begin launch the docker shell (or any shell if you are using Linux) and run the following command to launch a new TensorFlow container:
docker run -p 8888:8888 -p 6006:6006 b.gcr.io/tensorflow/tensorflow ./run_jupyter.sh
Then for Mac OS X and Windows you need to do the following only once:
Open VirtualBox
Click on the docker vm (mine was automatically named "default")
Open the settings by clicking settings
In the network settings open the port forwarding dialog
Click the + symbol to add another port and connect a port from your mac to the VM by filling in the dialog as shown below. In this example I chose port 8810 because I run other notebooks using port 8888.
then open a browser and connect to http://localhost:8810 (or whichever port you set in the host port section
Make your fancy pants machine learning app!
My simple yet efficient workflow:
TL;DR version:
Open Docker Quickstart Terminal. If it is already open, run $ cd
Run this once: $ docker run -it -p 8888:8888 -p 6006:6006 -v /$(pwd)/tensorflow:/notebooks --name tf b.gcr.io/tensorflow/tensorflow
To start every time: $ docker start -i tf
If you are not on windows, you should probably change /$(pwd) to $(pwd)
You will get an empty folder named tensorflow in your home directory for use as a persistent storage of project files such as Ipython Notebooks and datasets.
Explanation:
cd for making sure you are in your home directory.
params:
-it stands for interactive, so you can interact with the container in the terminal environment.
-v host_folder:container_folder enables sharing a folder between the host and the container. The host folder should be inside your home directory. /$(pwd) translates to //c/Users/YOUR_USER_DIR in Windows 10. This folder is seen as notebooks directory in the container which is used by Ipython/Jupyter Notebook.
--name tf assigns the name tf to the container.
-p 8888:8888 -p 6006:6006 mapping ports of container to host, first pair for Jupyter notebook, the second one for Tensorboard
-i stands for interactive
Running TensorFlow on the cloud
After further reading of docker documentation I have a solution that works for me:
docker run -p 8888:8888 -p 6006:6006 b.gcr.io/tensorflow/tensorflow ./run_jupyter.sh
The -p 8888:8888 and -p 6006:6006 expose the container ports to the host on the same port number. If you just use -p 8888, a random port on the host will be assigned.
The ./run_jupyter.sh tells docker what to execute within the container.
With this command, I can use a browser on the host machine to connect to http://localhost:8888/ and access the jupyter notebook.
UPDATE:
After wrestling with docker on windows I switched back to a Ubuntu machine with docker. My notebook was being erased between docker sessions which makes sense after reading more docker documentation. Here is an updated command which also mounts a host directory within the container and starts jupyter pointing to that mounted directory. Now my notebook is saved on the host and will be available next time start up tensorflow.
docker run -p 8888:8888 -p 6006:6006 -v /home/rob/notebook:/notebook b.gcr.io/tensorflow/tensorflow sh -c "jupyter notebook /notebook"
Jupyter now has a ready to run Docker image for TensorFlow:
docker run -d -v $(pwd):/home/jovyan/work -p 8888:8888 jupyter/tensorflow-notebook
These steps worked for me if you are a total docker noob using a windows machine.
Versions: Windows 8.1, docker 1.10.3, tensorflow r0.7
Run Docker Quickstart Terminal
After it is loaded, note the ip address. If you can't find it use this docker-machine ip and make a note. Lets call it 'ip address'. Will look something like this: 192.168.99.104 (I made up this ip address)
Paste this command on the docker terminal:
docker run -p 8888:8888 -p 6006:6006 b.gcr.io/tensorflow/tensorflow.
If you are running this for the first time, it will download and install the image on this light weight vm. Then it should say 'The Jupyter notebook is running at ....' -> This is a good sign!
Open your browser at: <your ip address (see above)>:8888. Eg. 192.168.99.104:8888/
Hopefully you can see your ipython files.
To get this to run under hyper-v. Perform the following steps:
1) Create a docker virtual machine using https://blogs.msdn.microsoft.com/scicoria/2014/10/09/getting-docker-running-on-hyper-v-8-1-2012-r2/ this will get you a working docker container. You can connect to it via the console or via ssh. I'd put at least 8gb of memory since I'm sure this will use a lot of memory.
2) run "ifconfig" to determine the IP address of the Docker VM
3) On the docker shell prompt type:
docker run -p 8888:8888 -p 6006:6006 -it b.gcr.io/tensorflow/tensorflow
4) Connect to the Jupyter Workbench using http:/[ifconfig address]:8888/
To tidy up the things a little bit, I want to give some additional explanations because I also suffered a lot setting up docker with tensorflow. For this I refer to this video which is unfortunately not selfexplanatory in all cases.
I assume you already installed docker. The really interesting general part of the video starts at minute 0:44 where he finally started docker. Until there he only downloads the tensorflow repo into the folder, that he then mounts into the container. You can of course put anything else into the container and access it later in the docker VM.
First he runs the long docker command docker run –dit -v /c/Users/Jay/:/media/disk –p 8000 –p 8888 –p 6006 b.gcr.io/tensorflow/tensorflow. The “run” command starts containers. In this case it starts the container “b.gcr.io/tensorflow/tensorflow”, whose address is provided within the tensorflow docker installation tutorial. The container will be downloaded by docker if not already locally available.
Then he gives two additional kinds of arguments: He mounts a folder of the hostsystem at the given path to the container. DO NOT forget to give the partition in the beginning (eg. "/c/").
Additionally he declares ports being available later from the host machine with the params -p.
From all this command you get back the [CONTAINER_ID] of this container execution!
You can always see the currently running containers by running “docker ps” in the docker console. Your container created above should appear in this list with the same id.
Next Step: With your container running, you now want to execute something in it. In our case jupyter notebook or tensorflow or whatever: To do this you make docker execute the bash on the newly created container: docker exec –ti [CONTAINER_ID] bash. This command now starts a bash shell on your container. You see this because the “$” now changed to root#[CONTAINER_ID]:. From here is no way back. If you want to get back to the docker terminal, you have to start another fresh docker console like he is doing in minute 1:10. Now with a bash shell running in the container you can do whatever you want and execute Jupiter or tensorflow or whatever. The folder of the host system, you gave in the run command, should be available now under “/media/disk”.
Last step accessing the VM output. It still did not want to work out for me and I could not access my notebook. You still have to find the correct IP and Port to access the launched notebook, tensorboard session or whatever. First find out the main IP by using docker-machine –ls. In this list you get the URL. (If it is your only container it is called default.) You can leave away the port given here. Then from docker ps you get the list of forwarded ports. When there is written 0.0.0.32776->6006/tcp in the list, you can access it from the hostmachine by using the port given in the first place (Awkyard). So in my case the executed tensorboard in the container said “launched on port 6006”. Then from my hostmachine I needed to enter http://192.168.99.100:32776/ to access it.
-> And that’s it! It ran for me like this!
It gives you the terminal prompt:
FOR /f "tokens=*" %i IN ('docker-machine env --shell cmd vdocker') DO %i
docker run -it tensorflow/tensorflow:r0.9-devel
or
FOR /f "tokens=*" %i IN ('docker-machine env --shell cmd vdocker') DO %i
docker run -it b.gcr.io/tensorflow/tensorflow:latest-devel
You should have 'vdocker' or change vdocker to 'default'.
For some reason I ran into one additional problem that I needed to overcome beyond the examples provided, using the --ip flag:
nvidia-docker run --rm \
-p 8888:8888 -p 6006:6006 \
-v `pwd`:/root \
-it tensorflow/tensorflow:latest-devel-gpu-py3 sh -c "jupyter notebook --ip 0.0.0.0 ."
And then I can access via http://localhost:8888 from my machine. In some ways this makes sense; within the container you bind to 0.0.0.0 which represents all available addresses. But whether I need to do this seems to vary (e.g I've started notebooks using jupyter/scipy-notebook without having to do this).
In any case, the above command works for me, might be of use to others.
As an alternative to the official TensorFlow image, you can also use the ML Workspace Docker image. The ML Workspace is an open-source web IDE that combines Jupyter, VS Code, TensorFlow, and many other tools & libraries into one convenient Docker image. Deploying a single workspace instance is as simple as:
docker run -p 8080:8080 mltooling/ml-workspace:latest
All tools are accessible from the same port and integrated into the Jupyter UI. You can find the documentation here.