I am using Vowpal Wabbit's contextual bandit to rank various action given a context.
Train Data:
"1:10:0.1 | 123"
"2:9:0.1 | 123"
"3:8:0.1 | 123"
"4:7:0.1 | 123"
"5:6:0.1 | 123"
"6:5:0.1 | 123"
"7:4:0.1 | 123"
Test Data:
" | 123"
Now, the expected ranking of action should be (from least loss to most loss):
7 6 5 4 3 2 1
Using --cb just returns the most optimal action:
7
And using --cb_explore returns a pdf of the actions to be explored but it doesn't seem to help in ranking.
[0.0071428571827709675, 0.0071428571827709675, 0.0071428571827709675, 0.0071428571827709675, 0.0071428571827709675, 0.0071428571827709675, 0.9571428298950195]
Is there any other way of using vw's contextual bandit for ranking?
Olga's response on the repo: https://github.com/VowpalWabbit/vowpal_wabbit/issues/2555
--cb does not do any exploration and just trains the model given the input so the output will be what the model (that has been trained so
far) predicted
--cb_explore includes exploration using epsilon-greedy by default if nothing else is specified. You can take a look at all the available
exploration methods here
cb_explore's output is the PMF given by the exploration strategy (see
here for more info).
Epsilon-greedy will choose, with probability e, an action at random
from a uniform distribution (exploration), and with probability 1-e
epsilon-greedy will use the so-far trained model to predict the best
action (exploitation).
So the output will be the pmf over the actions (prob. 1-e OR e for the
chosen action) and then the remaining probability will be equally
split between the remaining actions. Therefore cb_explore will not
provide you with a ranking.
One option for ranking would be to use CCB. Then you get a ranking and
can provide feedback on any slot, but it is more computationally
expensive. CCB runs CB for each slot, but the effect is a ranking
since each slot draws from the overall pool of actions.
And my follow up:
I think CCB is a good option if computational limits allow. I'd just
like to add that if you do cb_explore or cb_explore_adf then the
resulting PMF should be sorted by score so it is a ranking of sorts.
However, it's worth verifying that the ordering is in fact sorted by
scores (--audit will help here) as I don't know if there is a test
covering this.
I wouldn't use the PMF to rank the actions, since the PMF does not correspond to the expected reward of each action given the context (unlike in the traditional multi-armed bandit setting e.g. using Thompson Sampling, where it does).
A good way of doing what you want is to sample multiple actions (without replacement) from the action set, which is what the CCB submodule does (Jack's answer).
I wrote a tutorial and code for how to implement this (with simulated rewards) that could be helpful for analyzing how the PMF's update and how the model does for your specified reward distribution and action set.
Related
I am building a tool from scratch that takes a sample of text and turns it into a list of categories. I am not using any libraries for this at the moment but am interested if anyone has experience in this territory as the hardest part that I'm struggling with is building in sentiment to the search. It's easy to word match but sentiment is much more challenging.
The goal would be to take something like this paragraph;
"Whenever I am out walking with my son, I like to take portrait photographs of him to see how he changes over time. My favourite is a pic of him when we were on holiday in Spain and when his face was covered in chocolate from a cake we had baked"
and turn it into
categories = ['father', 'photography', 'travel', 'spain', 'cooking', 'chocolate']
If possible I'd like to end up adding a filter for negative sentiment so that if the text said;
"I hate cooking"
'cooking' wouldn't be included in the categories.
Any help is greatly appreciated. TIA đź‘Ť
You seem to have at least two tasks: 1. Sequence classification by topics; 2. Sentiment analysis. [Edit, I only noticed now that you are using Ruby/Rails, but the code below is in Python. But maybe this answer is still useful for some people and the steps can be applied in any language.]
1. For sequence classification by topics, you can either define categories simply with a list of words as you said. Depending on the use-case, this might be the easiest option. If that list of words were too time-intensive to create, you can use a pre-trained zero-shot classifier. I would recommend the zero-shot classifier from HuggingFace, see details with code here.
Applied to your use-case, this would look like this:
# pip install transformers # pip install in terminal
from transformers import pipeline
classifier = pipeline("zero-shot-classification")
sequence = ["Whenever I am out walking with my son, I like to take portrait photographs of him to see how he changes over time. My favourite is a pic of him when we were on holiday in Spain and when his face was covered in chocolate from a cake we had baked"]
candidate_labels = ['father', 'photography', 'travel', 'spain', 'cooking', 'chocolate']
classifier(sequence, candidate_labels, multi_class=True)
# output:
{'labels': ['photography', 'spain', 'chocolate', 'travel', 'father', 'cooking'],
'scores': [0.9802802205085754, 0.7929317951202393, 0.7469273805618286, 0.6030028462409973, 0.08006269484758377, 0.005216470453888178]}
The classifier returns scores depending on how certain it is that a each candidate_label is represented in your sequence. It doesn't catch everything, but it works quite well and is fast to put into practice.
2. For sentiment analysis you can use HuggingFace's sentiment classification pipeline. In your use-case, this would look like this:
classifier = pipeline("sentiment-analysis")
sequence = ["I hate cooking"]
classifier(sequence)
# Output
[{'label': 'NEGATIVE', 'score': 0.9984041452407837}]
Putting 1. and 2. together:
I would probably probably (a) first take your entire text and split it into sentences (see here how to do that); then (b) run the sentiment classifier on each sentence and discard those that have a high negative sentiment score (see step 2. above) and then (c) run your labeling/topic classification on the remaining sentences (see 1. above).
I was reading the topic of Decision Trees(page 720) from book Artificial Intelligence A Modern Approach 3rd edition. The book is describing some cases that may occur after we split the training set(examples) by choosing an attribute. One of the case mentioned is
If there are no examples left, it means that no example has been observed for this combination of attribute values, and we return a default value calculated from the plurality classification of all the examples that were used in constructing the node’s parent.
I understand that by plurality classification they mean majority rule. But I am unable to understand the above cases i.e. when could it occur. Some example of decision tree where the above cases becomes true.
Think of the problem as constructing a 2D table of occurrence counts where the column represents some feature or class to be considered and the rows represent particular configurations of other variables.
for example,
X Y Z | class counts
------+-------------
1 1 1 | ...
1 1 2 | ...
1 1 3 | ...
The table represents the joint distribution of the training set.
A particular combination of X, Y and Z (say 1,3,1) may not have been seen during training. The more variables you have, the more likely you will encounter unseen combinations. If you have 10 variables each with two states then there are 1024 possible configurations of those variables. If there are three states for each then the number of configurations would be 3 ^ 10, etc.
Frankly, I would use 1/numberCols for any particular column with a missing row as you don't really have any information regarding it. You could use 1/Sum(rows) for each column but this may unnecessarily bias the result. Depends on the data.
I'm not really sure how to word this and I'm sorry if the formatting is wrong, but I'm trying to get a foundation to be able to tackle this problem myself.
I am trying to develop a prediction algorithm for a set of data of "Hip Surgery Patients" that looks like:
Readmission Time | Symptom Code | Symptom Note | Related
6 | 2334 | swelling in hip | Yes
12 | 1324 | anxiety | Maybe
8 | 2334 | swelling in hip | Yes
30 | 1111 | Headaches | No
3 | 7934 | easily bruising | Yes
For context, doctors can identify whether or not a given "Symptom Code" is related to the "Hip Replacement Surgery" that occurred X days ago. I have about 200 entries in my data set that match this format, and my goal is to be able to match results in the given set as well as predict new results in the "Related" Column (with certainty statistics on predicted results) based on new inputs. For example given:
Input: 20 | 2334 | swelling in hip
Output: Yes (90% confidence)
I'm very new to Data Analytics and Machine Learning so I would really just like to get some kind of pointers of things to look up or where to get started on my research. I imagine there's an optimal function/model that would handle this best but as I said I'm very new to the topic so I have no clue as to where to start. Since I have a relatively small data set I'm looking for a technique that isn't easily over trained if possible
I really appreciate any help and pointers on where to get started.
Based on your data snippet, it looks like a multiclass classification problem (the 3-classses being Yes, Maybe or No).
Your columns (asides related) will be your features which can be reduced to numeric representations. For instance:
For the Symptom Note Feature, you can have a mapping as seen below:
Swelling in hip = 1
Anxiety = 2
Swelling = 3
Easily Bruised = 4
Obviously this can work if you have a definite number of symptoms in this columns. Machine learning algorithms usually work with numbers so your features will be extracted from the raw data into numeric form. Once that has been done, you can feed the data into a classification algorithm. The naive Bayes algorithm is a great place to start.
Scikit learn (if you can work with python) has a great introductory example on a 3class classification task where all the features are numbers. It tries to classify different types of iris flowers based on the sepal length, sepal width, petal length and petal width.
The full tutorial can be found here: Supervised learning: predicting an output variable from high-dimensional observations
Is it feasible to get additional data? If it is, I will suggest you get more. 200 instances is quite small and may not properly represent the feature space. In addition, it will be useful to split the data into a training and test set further reducing the quantity used while training. You can also opt for a K-Folds Cross validation.
Summarily: navigate to that scikit-learn page, try out the flower classification example. Once you're familiar with the environment; your data will need some cleaning and feature extraction. You will need to answer questions like what's the meaning of the Readmission Time and Symptom Code? Are those values over a specified range with a special internal meaning or they are just random numbers assigned like an id.
I would recommend transcribing your data into ARFF format and then use this with Weka. Weka is a program with many machine learning algorithms you can experiment with, it also has a very simple user interface so is good for beginners! Once you have found an algorithm that works well you can save your trained model and use this to predict new instances!
I am a developer that has been tasked with working out how previous results using SPSS were gathered, so we can repeat the process with some new data. We can't ask the person who did the original analysis because he is sadly no longer with us, so it has fallen to me to unravel what he did.
I am not a statistician and do not need to understand the principles involved. I really just need to know what menu items to navigate to.
We had a survey done, which asked a lot of questions of 10,000 people. A subset of 15 of these questions is being used for the analysis.
I know that factor analysis was done to reduce the data to 4 sets. K-means clustering was then used to find the cluster centers. This is what I'm after now.
I have worked out how to do the factor analysis to get the component score coefficient matrix that matches the data I have in my database. This was done by going to Analyze > Dimension Reduction > Factor. I then chose a fixed number of factors (4) from the "Extract" section, "Varimax" rotation from the "Rotation" section and checked the "Display factor score coefficient matrix" in the "Scores" section.
This gave data like this:
Matrix Value 1 Value 2 Value 3 Value 4
Q1 -0.0756 0.2134 -0.0245 -0.1236
Q2 ... ... ... ...
Q3 ... ... ... ...
...
What I have no idea of is how to proceed with this to do the k-means clustering.
The results I have in the database look like this:
Cluster centers Value 1 Value 2 Value 3 Value 4 Value 5
FAC1_1 -0.8373 -0.5766 0.2100 1.3499 0.2940
FAC2_1 ... ... ... ... ...
FAC3_1 ... ... ... ... ...
FAC4_1 ... ... ... ... ...
Now, I know that k-means clustering can be done on the original data set by using Analyze > Classify > K-means Cluster, but I don't know how to reference the factor analysis I've done.
Could someone give me some insight into how to create these cluster centers using SPSS?
In the GUI for FACTOR analysis (Analyze > Dimension Reduction > Factor), you have a sub-dialog "Scores", make sure "Save as variables" is checked.
This will save the factor scores in your data i.e. the variables FAC1_1, FAC2_1, FAC3_1, FAC4_1.
It is these variable that you then need to add as input variables in the K-means GUI.
It is better to setup your work in a syntax so if ever anyone else ever wants to replicate your work they can do so (and ideally your predecessor should have left his bread crumbs in a syntax document too. I would make every attempt to find this document if there is a remote possibility of it existing, a file of .sps file extension).
Here's how you'd set this up in syntax and what his/her workings may have looked like:
/* Replicate the factor analysis (four factors) and save the factor score variables */.
FACTOR
/VARIABLES < INPUT THE 15 VARIABLES HERE >
/MISSING LISTWISE
/ANALYSIS < INPUT THE 15 VARIABLES HERE >
/PRINT EXTRACTION ROTATION FSCORE
/FORMAT SORT BLANK(.10)
/PLOT ROTATION
/CRITERIA FACTORS(4) ITERATE(25)
/EXTRACTION PC
/CRITERIA ITERATE(25)
/ROTATION VARIMAX
/SAVE REG(ALL)
/METHOD=CORRELATION.
/* Replicate the clustering using factor scores as inputs, generating 5 segments */.
QUICK CLUSTER FAC1_1 FAC2_1 FAC3_1 FAC4_1
/MISSING=LISTWISE
/CRITERIA=CLUSTER(5) MXITER(10) CONVERGE(0)
/METHOD=KMEANS(NOUPDATE)
/SAVE CLUSTER (Seg5)
/PRINT INITIAL.
/* Check centroids match*/.
MEANS FAC1_1 FAC2_1 FAC3_1 FAC4_1 BY Seg5 /CELLS MEAN.
If you can replicate the FACTOR score variables to match exactly, then that is a good start, if the centroids do not match then, given the factor scores do match, then it can only be/most likely to be because the segment assignments are now different. Despite using the same input/methodology if the case ordering is different to previously, K-Means QUICK CLUSTER, can and will most likely yield different segment assignments due to random starting points.
I don't know any way round this but in principle these are the likely steps he/she had taken.
I have done same kind of analysis for a project of mine. First carry out the factor analysis, once you have been able to extract good amount of variance from the factor analysis try to save the factor scores (In SPSS).
For saving the factor scores go to Analyse->Dimension Reduction->Factor->Score->Save as variables.
As you save the scores there would be new variables created in the Variable view based on the number of components.
After you have been able to save the scores of the factors go to Analyse->Classify->K-Means and select the new variables (Factors Scores) enter the number of initial clusters required then OK.
If you have access to the system where the original work was done, look for the journal file (typically named statistics.jnl and kept in the location specified under Edit > Options > Files).
If journaling was in effect with the append option, it will have all the commands the user ran.
I'm doing the same set of analyses for a project. Just for your information, two-step clustering process offered by SPSS is more robust that K-means (Punj & Stewart 1983). In K-means, how are you going to choose the K?! You can also use the clvalid package to get the optimal number of K if you insist on using K-means.
Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: review and suggestions for application. Journal of marketing research, 134-148.
I am trying to map electrical signals (specifically EEG signals) to actions. I have the raw data from from the eeg device it has 14 channels so for each training data instance I end up with a 14x128 matrix. (14 channels 128 samples (1 sec window)). Currently what I do is apply hamming window on each channel then apply fft to classify using frequency. What I can not wrap my head around is SVM (or other classification algorithms) expects a matrix of the following form
Feature 1 | Feature 2 | Feature 3 | .... | Feature N | Class
but in the case of EEG each channel is the feature but instead of having single values each channel has vector of 128 values. what would be the best way to transform this matrix into a form that svm can understand? Say do I just modify the 14x128 matrices add new col class and append them one after the other. So for a 1 sec record of the eeg signal I end up with 128 pos/neg classes?
You almost certainly need some feature extraction prior to handing the raw data to the SVM. With temporal data like this, the important features are generally not represented well by individual point readings. Rather, they are captured by relationships over time.
I did some work about 10 years ago with SVMs on EEG data[1], and what we did at the time was split the data into windows, but then build autoregression models of each window. Our features for the classifiers were not the raw sensor readings, but the AR coefficients for each channel. This gives you much more useful information for the classifier to use.
I haven't kept working in that area, and I can't say for sure what people are doing now 10+ years later, but certainly I would expect the state of the art to still involve some sort of feature extraction.
[1] http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1214704 (pdf available from my personal page http://www.ru.is/kennarar/deong/pubs/ieee_eeg_final.pdf)
Edit: In light of the discussion in the comments, I'm editing the answer to provide a bit more detail. Signal processing is not my strongest area, so if I'm completely mistaking your description of what it is you're doing, feel free to ignore.
Yes, the answer to the question you asked is that when you have multiple channels of data and so your instance is a matrix, you just concatenate the rows into a row vector. So if for each training instance, you're getting a 14x128 matrix, you'd just convert that into a 1x1792 vector and then stick the class label on the end. Like
c1x1 | c1x2 | c1x3 | ... | c1x128 | c2x1 | c2x2 | ... | c14x127 | c14x128 | class
where cNxM = channel N, sample M. That would be the standard way to make a single feature vector out of a sort of feature matrix.
However...read on to see why I think this is not what you really want to do.
I'm still not clear what it is you're describing. In particular, where does the 128 come from? I see two possibilities here. (A) is that you sample each of the 14 electrodes 128 times for each item you want to classify. This is what I'm calling the raw data. (B) is that you've already run the DFT and you've ended up with 128 coefficients per channel. I think (A) is what you mean, and that's what I assume here, but it's not entirely clear.
For classification, you need meaningful features. Features are just whatever you decide to make them. You could take each of the 14 sensors, compute the mean and variance of the 128 points, and use those as your features. In that case, your training instances would look like
mean_ch1 | var_ch1 | mean_ch2 | var_ch2 | ... | mean_ch14 | var_ch14 | class
For EEG classification, mean and variance aren't going to be very good though -- they're not likely to provide enough useful information to discriminate between the classes. That's what I mean by meaningful features. If you want to predict whether, for example, an invasive species will thrive in a lake, you might need to know the temperature. You could then pass the classifier the estimated velocity of every water molecule in the lake separately, but that's entirely the wrong level of detail, and it's really unlikely the classifier would learn anything. You need to give it the temperature already computed.
So in your case, you could instead take an FFT of each window of 128 points. That would give you some small number of non-zero coefficients per channel. Your training data would then look like
dft_coeff1_ch1 | cft_coeff2_ch1 | dft_coeff3_ch1 | dft_coeff1_ch2 | dft_coeff2_ch2 | ... | class
You could also just dump the 128 values per channel into the feature vector unmodified, giving you 14*128=1792 features per input, but those features are probably terribly unhelpful -- you're giving it the velocities of molecules rather than the temperature again. In principle, most learning algorithms would be capable of learning the target concept, but the requirements on the amount of training data and time needed may be vast.
Features should capture the level of detail the classifier can use. For most time series data, that usually means high-level conceptual things like "sloping upward", "V-shaped", "flat for a while, then decreasing", "oscillating at these frequencies", etc. Whatever you as a human think might be relevant. This is really the reason to use something like a Fourier transform -- the frequency domain gives you a much higher level, and probably more useful, description of the signal with many fewer degrees of freedom than the time domain.