How do I test "should not contain" using FsUnit.Xunit? - f#

I am trying to test that a collection does not contain a value using FsUnit.Xunit.
open FsUnit.Xunit
[<Fact>]
let ``simple test`` () =
let xs = [ 1; 2; 3 ]
xs |> should contain 1
xs |> should not contain 99 // Not real code
I have also tried using not'.
How should I write this?

You just need to wrap it in parenthesis since it expects a constraint (and not a function). contain is a function that expects a value and returns a constraint.
xs |> should not' (contain 99)

Related

Recursive function in F# that determines in a list of n elements of type int, the greater of two adjacent values

I have recently started learning f# and I have a problem with a task like the one in the subject line. I managed to solve this task but not using a recursive function. I have tried to convert my function to a recursive function but it does not work because in the function I create arrays which elements I then change. Please advise me how to convert my function to a recursive function or how else to perform this task.
let list = [8;4;3;3;5;9;-7]
let comp (a,b) = if a>b then a elif b = a then a else b
let maks (b: _ list) =
let x = b.Length
if x % 2 = 0 then
let tab = Array.create ((x/2)) 0
for i = 0 to (x/2)-1 do
tab.[i] <- (comp(b.Item(2*i),b.Item(2*i+1)))
let newlist = tab |> Array.toList
newlist
else
let tab = Array.create (((x-1)/2)+1) 0
tab.[(((x-1)/2))] <- b.Item(x-1)
for i = 0 to ((x-1)/2)-1 do
tab.[i] <- (comp(b.Item(2*i),b.Item(2*i+1)))
let newlist = tab |> Array.toList
newlist
It is worth noting that, if you were doing this not for learning purposes, there is a nice way of doing this using the chunkBySize function:
list
|> List.chunkBySize 2
|> List.map (fun l -> comp(l.[0], l.[l.Length-1]))
This splits the list into chunks of size at most 2. For each chunk, you can then compare the first element with the last element and that is the result you wanted.
If this is a homework question, I don't want to give away the answer, so consider this pseudocode solution instead:
If the list contains at least two elements:
Answer a new list consisting of:
The greater of the first two elements, followed by
Recursively applying the function to the rest of the list
Else the list contains less than two elements:
Answer the list unchanged
Hint: F#'s pattern matching ability makes this easy to implement.
Thanks to your guidance I managed to create the following function:
let rec maks2 (b: _ list,newlist: _ list,i:int) =
let x = b.Length
if x >= 2 then
if x % 2 = 0 then
if i < ((x/2)-1)+1 then
let d = (porownaj(b.Item(2*i),b.Item(2*i+1)))
let list2 = d::newlist
maks2(b,list2,i+1)
else
newlist
else
if i < ((x/2)-1)+1 then
let d = (porownaj(b.Item(2*i),b.Item(2*i+1)))
let list2 = d::newlist
maks2(b,list2,i+1)
else
let list3 = b.Item(x-1)::newlist
list3
else
b
The function works correctly, it takes as arguments list, empty list and index.
The only problem is that the returned list is reversed, i.e. values that should be at the end are at the beginning. How to add items to the end of the list?
You can use pattern matching to match and check/extract lists in one step.A typical recursive function, would look like:
let rec adjGreater xs =
match xs with
| [] -> []
| [x] -> [x]
| x::y::rest -> (if x >= y then x else y) :: adjGreater rest
It checks wether the list is empty, has one element, or has two elements and the remaining list in rest.
Then it builds a new list by either using x or y as the first element, and then compute the result of the remaing rest recursivly.
This is not tail-recursive. A tail-call optimized version would be, that instead of using the result of the recursive call. You would create a new list, and pass the computed valuke so far, to the recursive function. Usually this way, you want to create a inner recursive loop function.
As you only can add values to the top of a list, you then need to reverse the result of the recursive function like this:
let adjGreater xs =
let rec loop xs result =
match xs with
| [] -> result
| [x] -> x :: result
| x::y::rest -> loop rest ((if x >= y then x else y) :: result)
List.rev (loop xs [])

Confusing anonymous function construct

I'm reading through an F# tutorial, and ran into an example of syntax that I don't understand. The link to the page I'm reading is at the bottom. Here's the example from that page:
let rec quicksort2 = function
| [] -> []
| first::rest ->
let smaller,larger = List.partition ((>=) first) rest
List.concat [quicksort2 smaller; [first]; quicksort2 larger]
// test code
printfn "%A" (quicksort2 [1;5;23;18;9;1;3])
The part I don't understand is this: ((>=) first). What exactly is this? For contrast, this is an example from the MSDN documentation for List.partition:
let list1 = [ 1 .. 10 ]
let listEven, listOdd = List.partition (fun elem -> elem % 2 = 0) list1
printfn "Evens: %A\nOdds: %A" listEven listOdd
The first parameter (is this the right terminology?) to List.partition is obviously an anonymous function. I rewrote the line in question as this:
let smaller,larger = List.partition (fun e -> first >= e) rest
and it works the same as the example above. I just don't understand how this construct accomplishes the same thing: ((>=) first)
http://fsharpforfunandprofit.com/posts/fvsc-quicksort/
That's roughly the same thing as infix notation vs prefix notation
Operator are functions too and follow the same rule (ie. they can be partially applied)
So here (>=) first is the operator >= with first already applied as "first" operand, and gives back a function waiting for the second operand of the operator as you noticed when rewriting that line.
This construct combines two features: operator call with prefix notation and partial function application.
First, let's look at calling operators with prefix notation.
let x = a + b
The above code calls operator + with two arguments, a and b. Since this is a functional language, everything is a function, including operators, including operator +. It's just that operators have this funny call syntax, where you put the function between the arguments instead of in front of them. But you can still treat the operator just as any other normal function. To do that, you need to enclose it on parentheses:
let x = (+) a b // same thing as a + b.
And when I say "as any other function", I totally mean it:
let f = (+)
let x = f a b // still same thing.
Next, let's look at partial function application. Consider this function:
let f x y = x + y
We can call it and get a number in return:
let a = f 5 6 // a = 11
But we can also "almost" call it by supplying only one of two arguments:
let a = f 5 // a is a function
let b = a 6 // b = 11
The result of such "almost call" (technically called "partial application") is another function that still expects the remaining arguments.
And now, let's combine the two:
let a = (+) 5 // a is a function
let b = a 6 // b = 11
In general, one can write the following equivalency:
(+) x === fun y -> x + y
Or, similarly, for your specific case:
(>=) first === fun y -> first >= y

FsUnit `should equal` fails on `Some []`

When I run this FsUnit test with NUnit 2.6.3,
let f xs = Some (List.map ((+) 2) xs)
[<Test>]
let test() =
f []
|> should equal (Some [])
I get:
Result Message:
Expected: <Some([])>
But was: <Some([])>
Result StackTrace:
at FsUnit.TopLevelOperators.should[a,a](FSharpFunc`2 f, a x, Object y)
The test fails even though the Expected and Actual in the message are the same. What happened?
The reason is that FsUnit uses untyped mechanism under the hood so Expected is inferred as object by the type checker (see the Object y part in the stacktrace).
A workaround is to add type annotation for generic values i.e.
[<Test>]
let test() =
f []
|> should equal (Some ([]: int list))
Several people have been bitten by this e.g. Weird None behaviour in type providers.
Beauty of fluent assertions is pointless to me once they're no longer type-safe. I suggest to create a type-safe alternative:
let shouldEqual (x: 'a) (y: 'a) =
Assert.AreEqual(x, y, sprintf "Expected: %A\nActual: %A" x y)
This is because your two empty lists are of different types. See the types of actual and expected in this version of your test:
[<Test>]
let test() =
let expected = Some []
let actual = f []
actual |> should equal expected
expected is 'a list option and actual is int list option, so they are not equal.
If you give the compiler some hints about the expected result then it will work.
[<Test>]
let test() =
f []
|> should equal (Some List.empty<int>)

How do I get the max value from a list with a function that takes two arguments?

Define the function max2 that takes two integers as arguments and returns the largest of them.
I did this: let max2 x y = if x < y then y else x this I belive is correct
Then define the function max_list that returns the largest of the elements in a nonempty list of integers by calling max2. For the empty list, it should abort with an error message ( raising an exception)
I did this: let list = [3;4] let max_list = if list.IsEmpty then 0 else max2 list.Item(0) list.Item(1) but this wont work if the list is more then two elements. I dont want to use any object-orientated stuff. What is the correct answer?
The correct answer is that you should read about recursion with lists.
F# list is built up gradually using empty list [] and cons (::) constructor. For example,
[3; 4] is a syntactic sugar for 3::4::[]. We often use pattern matching on lists in writing recursive functions.
Here is a recursive function following your requirements closely:
let rec max_list xs =
match xs with
// The function aborts with an error message on empty lists
| [] -> invalidArg "xs" "Empty list"
// Return immediately on a singleton list
| [x] -> x
// xs has at least two elements, call max_list
// on the bigger element of the first two ones and the rest of the list
| x1::x2::xs' -> max_list((max2 x1 x2)::xs')
On a side note, there is a built-in generic max function which also works on integers.
A simple recursive solution:
let max2 x y = if x < y then y else x
let max_list list =
let rec loop hi list =
match list with
| h::t -> let hi = max2 h hi
loop hi t
| [] -> hi
match list with
| h::t -> loop h t
| [] -> invalidArg "list" "Empty list"
Test in FSI:
> max_list [3;4;5;1;2;9;0];;
val it : int = 9
For each element in the list, compare it to the previous highest ('hi'). Pass the new highest and the rest of the list into the loop function, until the input list is empty. Then just return 'hi'.

Return value in F# - incomplete construct

I've trying to learn F#. I'm a complete beginner, so this might be a walkover for you guys :)
I have the following function:
let removeEven l =
let n = List.length l;
let list_ = [];
let seq_ = seq { for x in 1..n do if x % 2 <> 0 then yield List.nth l (x-1)}
for x in seq_ do
let list_ = list_ # [x];
list_;
It takes a list, and return a new list containing all the numbers, which is placed at an odd index in the original list, so removeEven [x1;x2;x3] = [x1;x3]
However, I get my already favourite error-message: Incomplete construct at or before this point in expression...
If I add a print to the end of the line, instead of list_:
...
print_any list_;
the problem is fixed. But I do not want to print the list, I want to return it!
What causes this? Why can't I return my list?
To answer your question first, the compiler complains because there is a problem inside the for loop. In F#, let serves to declare values (that are immutable and cannot be changed later in the program). It isn't a statement as in C# - let can be only used as part of another expression. For example:
let n = 10
n + n
Actually means that you want the n symbol to refer to the value 10 in the expression n + n. The problem with your code is that you're using let without any expression (probably because you want to use mutable variables):
for x in seq_ do
let list_ = list_ # [x] // This isn't assignment!
list_
The problematic line is an incomplete expression - using let in this way isn't allowed, because it doesn't contain any expression (the list_ value will not be accessed from any code). You can use mutable variable to correct your code:
let mutable list_ = [] // declared as 'mutable'
let seq_ = seq { for x in 1..n do if x % 2 <> 0 then yield List.nth l (x-1)}
for x in seq_ do
list_ <- list_ # [x] // assignment using '<-'
Now, this should work, but it isn't really functional, because you're using imperative mutation. Moreover, appending elements using # is really inefficient thing to do in functional languages. So, if you want to make your code functional, you'll probably need to use different approach. Both of the other answers show a great approach, although I prefer the example by Joel, because indexing into a list (in the solution by Chaos) also isn't very functional (there is no pointer arithmetic, so it will be also slower).
Probably the most classical functional solution would be to use the List.fold function, which aggregates all elements of the list into a single result, walking from the left to the right:
[1;2;3;4;5]
|> List.fold (fun (flag, res) el ->
if flag then (not flag, el::res) else (not flag, res)) (true, [])
|> snd |> List.rev
Here, the state used during the aggregation is a Boolean flag specifying whether to include the next element (during each step, we flip the flag by returning not flag). The second element is the list aggregated so far (we add element by el::res only when the flag is set. After fold returns, we use snd to get the second element of the tuple (the aggregated list) and reverse it using List.rev, because it was collected in the reversed order (this is more efficient than appending to the end using res#[el]).
Edit: If I understand your requirements correctly, here's a version of your function done functional rather than imperative style, that removes elements with odd indexes.
let removeEven list =
list
|> Seq.mapi (fun i x -> (i, x))
|> Seq.filter (fun (i, x) -> i % 2 = 0)
|> Seq.map snd
|> List.ofSeq
> removeEven ['a'; 'b'; 'c'; 'd'];;
val it : char list = ['a'; 'c']
I think this is what you are looking for.
let removeEven list =
let maxIndex = (List.length list) - 1;
seq { for i in 0..2..maxIndex -> list.[i] }
|> Seq.toList
Tests
val removeEven : 'a list -> 'a list
> removeEven [1;2;3;4;5;6];;
val it : int list = [1; 3; 5]
> removeEven [1;2;3;4;5];;
val it : int list = [1; 3; 5]
> removeEven [1;2;3;4];;
val it : int list = [1; 3]
> removeEven [1;2;3];;
val it : int list = [1; 3]
> removeEven [1;2];;
val it : int list = [1]
> removeEven [1];;
val it : int list = [1]
You can try a pattern-matching approach. I haven't used F# in a while and I can't test things right now, but it would be something like this:
let rec curse sofar ls =
match ls with
| even :: odd :: tl -> curse (even :: sofar) tl
| even :: [] -> curse (even :: sofar) []
| [] -> List.rev sofar
curse [] [ 1; 2; 3; 4; 5 ]
This recursively picks off the even elements. I think. I would probably use Joel Mueller's approach though. I don't remember if there is an index-based filter function, but that would probably be the ideal to use, or to make if it doesn't exist in the libraries.
But in general lists aren't really meant as index-type things. That's what arrays are for. If you consider what kind of algorithm would require a list having its even elements removed, maybe it's possible that in the steps prior to this requirement, the elements can be paired up in tuples, like this:
[ (1,2); (3,4) ]
That would make it trivial to get the even-"indexed" elements out:
thelist |> List.map fst // take first element from each tuple
There's a variety of options if the input list isn't guaranteed to have an even number of elements.
Yet another alternative, which (by my reckoning) is slightly slower than Joel's, but it's shorter :)
let removeEven list =
list
|> Seq.mapi (fun i x -> (i, x))
|> Seq.choose (fun (i,x) -> if i % 2 = 0 then Some(x) else None)
|> List.ofSeq

Resources