I'd like to ask if it is possible to build a recommender system on a binary rating (like or doesn't like) system in keras?
EDIT: I am trying to build a recommender system that recommends posts/feeds to users if they like/dislike feeds based on categories/topics (politics, Fashion, Arts/Culture, etc) shown to them.
You should take a look at factorization machines models. They are very well suited for classification problems with sparse input data.
I found this link after a quick search showing an implementation of factorization machines and DeepFM in Keras (I am not related to the author of this link) : https://6chaoran.wordpress.com/2019/01/03/implement-deepfm-model-in-keras/
Related
I am developing a website, which will recommend recipes to the visitors based on their data. I am collecting data from their profile, website activity and facebook.
Currently I have data like [username/userId, rating of recipes, age, gender, type(veg/Non veg), cuisine(Italian/Chinese.. etc.)]. With respect to above features I want to recommend new recipes which they have not visited.
I have implemented ALS (alternating least squares) spark algorithm. In this we have to prepare csv which contains [userId,RecipesId,Rating] columns. Then we have to train this data and create the model by adjusting parameters like lamdas, Rank, iteration. This model generated recommendation, using pyspark
model.recommendProducts(userId, numberOfRecommendations)
The ALS algorithm accepts only three features userId, RecipesId, Rating. I am unable to include more features (like type, cuisine, gender etc.) apart from which I have mentioned above (userId, RecipesId, Rating). I want to include those features, then train the model and generate recommendations.
Is there any other algorithm in which I can include above parameters and generate recommendation.
Any help would be appreciated, Thanks.
Yes, there are couple of others algorithms. For your case, I would suggest that you Naive Bayes algorithm.
https://en.wikipedia.org/wiki/Naive_Bayes_classifier
Since you are working on a web application, a JS solution, I guess, would come handy to you.
(simple) https://www.npmjs.com/package/bayes
or for example:
(a bit more powerful) https://www.npmjs.com/package/naivebayesclassifier
There are algorithms called recommender systems in machine learning. In this we have content based recommender systems. They are mainly used to recommend products/movies based on customer reviews. You can apply the same algorithm using customer reviews to recommend recipes. For better understanding of this algorithm refer this links:
https://www.youtube.com/watch?v=Bv6VkpvEeRw&list=PL0Smm0jPm9WcCsYvbhPCdizqNKps69W4Z&index=97
https://www.youtube.com/watch?v=2uxXPzm-7FY
You can go with powerful classification algorithms like
->SVM: works very well if you have more number of attributes.
->Logistic Regression: if you have huge data of customers.
You are looking for recommender systems using algorithms like collaborative filtering. I would suggest you to go through Prof.Andrew Ng's short videos on collaborative filtering algorithm and low-rank matrix factorization and also building recommender systems. They are a part of Coursera's Machine learning course offered by Stanford University.
The course link:
https://www.coursera.org/learn/machine-learning#%20
You can check week 9 for the content related to recommender systems.
I have developed a ML model for a classification (0/1) NLP task and deployed it in production environment. The prediction of the model is displayed to users, and the users have the option to give a feedback (if the prediction was right/wrong).
How can I continuously incorporate this feedback in my model ? From a UX stand point you dont want a user to correct/teach the system more than twice/thrice for a specific input, system shld learn fast i.e. so the feedback shld be incorporated "fast". (Google priority inbox does this in a seamless way)
How does one build this "feedback loop" using which my system can improve ? I have searched a lot on net but could not find relevant material. any pointers will be of great help.
Pls dont say retrain the model from scratch by including new data points. Thats surely not how google and facebook build their smart systems
To further explain my question - think of google's spam detector or their priority inbox or their recent feature of "smart replies". Its a well known fact that they have the ability to learn / incorporate (fast) user feed.
All the while when it incorporates the user feedback fast (i.e. user has to teach the system correct output atmost 2-3 times per data point and the system start to give correct output for that data point) AND it also ensure it maintains old learnings and does not start to give wrong outputs on older data points (where it was giving right output earlier) while incorporating the learning from new data point.
I have not found any blog/literature/discussion w.r.t how to build such systems - An intelligent system that explains in detaieedback loop" in ML systems
Hope my question is little more clear now.
Update: Some related questions I found are:
Does the SVM in sklearn support incremental (online) learning?
https://datascience.stackexchange.com/questions/1073/libraries-for-online-machine-learning
http://mlwave.com/predicting-click-through-rates-with-online-machine-learning/
https://en.wikipedia.org/wiki/Concept_drift
Update: I still dont have a concrete answer but such a recipe does exists. Read the section "Learning from the feedback" in the following blog Machine Learning != Learning Machine. In this Jean talks about "adding a feedback ingestion loop to machine". Same in here, here, here4.
There could be couple of ways to do this:
1) You can incorporate the feedback that you get from the user to only train the last layer of your model, keeping the weights of all other layers intact. Intuitively, for example, in case of CNN this means you are extracting the features using your model but slightly adjusting the classifier to account for the peculiarities of your specific user.
2) Another way could be to have a global model ( which was trained on your large training set) and a simple logistic regression which is user specific. For final predictions, you can combine the results of the two predictions. See this paper by google on how they do it for their priority inbox.
Build a simple, light model(s) that can be updated per feedback. Online Machine learning gives a number of candidates for this
Most good online classifiers are linear. In which case we can have a couple of them and achieve non-linearity by combining them via a small shallow neural net
https://stats.stackexchange.com/questions/126546/nonlinear-dynamic-online-classification-looking-for-an-algorithm
I'm playing around with writing a web crawler that scans for a specific set of keywords and then assigns a global score to each domain it encounters based on a cumulative score I assigned to each keyword (programming=1, clojure=2, javascript=-1, etc...).
I have set up my keyword scoring on a sliding scale of -10 to 10 and I have based my initial values on my own assumptions about what is and is not relevant.
I feel that my scoring model may be flawed, and I would prefer to feed a list of domains that match the criteria I'm trying to capture into an analysis tool and optimize my keyword weights based on some kind of statistical analysis.
What would be an appropriate analysis technique to generate an optimal scoring model for a list of "known good domains"? Is this problem suited for bayesian learning, monte carlo simulation, or some other technique?
So, given a training set of relevant and irrelevant domains, you'd like to build a model which classifies new domains to one of these categories. I assume the features you will be using are the terms appearing in the domains, i.e. this is can be framed as a document classification problem.
Generally, you are correct in assuming that letting statistical-based machine learning algorithms to do the "scoring" for you works better than assigning manual scores to keywords.
A simple way to approach the problem would be to using Bayesian learning, and specifically, Naive Bayes might be a good fit.
After generating a dataset from the domains you've manually tagged (e.g. collecting several pages from each domain and treating each as a document), you can experiment various algorithms using one of the machine learning frameworks, e.g. WEKA.
A primer on how to handle and load text documents to WEKA can be found here. After the data is loaded, you can use the framework to experiment with various classification algorithms, e.g. Naive Bayes, SVM, etc. Once you've found the method best fitting your needs, you can export the resulting model and use it via WEKA's Java API.
Dear all I am working on a project in which I have to categories research papers into their appropriate fields using titles of papers. For example if a phrase "computer network" occurs somewhere in then title then this paper should be tagged as related to the concept "computer network". I have 3 million titles of research papers. So I want to know how I should start. I have tried to use tf-idf but could not get actual results. Does someone know about a library to do this task easily? Kindly suggest one. I shall be thankful.
If you don't know categories in advance, than it's not classification, but instead clustering. Basically, you need to do following:
Select algorithm.
Select and extract features.
Apply algorithm to features.
Quite simple. You only need to choose combination of algorithm and features that fits your case best.
When talking about clustering, there are several popular choices. K-means is considered one of the best and has enormous number of implementations, even in libraries not specialized in ML. Another popular choice is Expectation-Maximization (EM) algorithm. Both of them, however, require initial guess about number of classes. If you can't predict number of classes even approximately, other algorithms - such as hierarchical clustering or DBSCAN - may work for you better (see discussion here).
As for features, words themselves normally work fine for clustering by topic. Just tokenize your text, normalize and vectorize words (see this if you don't know what it all means).
Some useful links:
Clustering text documents using k-means
NLTK clustering package
Statistical Machine Learning for Text Classification with scikit-learn and NLTK
Note: all links in this answer are about Python, since it has really powerful and convenient tools for this kind of tasks, but if you have another language of preference, you most probably will be able to find similar libraries for it too.
For Python, I would recommend NLTK (Natural Language Toolkit), as it has some great tools for converting your raw documents into features you can feed to a machine learning algorithm. For starting out, you can maybe try a simple word frequency model (bag of words) and later on move to more complex feature extraction methods (string kernels). You can start by using SVM's (Support Vector Machines) to classify the data using LibSVM (the best SVM package).
The fact, that you do not know the number of categories in advance, you could use a tool called OntoGen. The tool basically takes a set of texts, does some text mining, and tries to discover the clusters of documents. It is a semi-supervised tool, so you must guide the process a little, but it does wonders. The final product of the process is an ontology of topics.
I encourage you, to give it a try.
I am trying to implement a naive bayseian approach to find the topic of a given document or stream of words. Is there are Naive Bayesian approach that i might be able to look up for this ?
Also, i am trying to improve my dictionary as i go along. Initially, i have a bunch of words that map to a topics (hard-coded). Depending on the occurrence of the words other than the ones that are already mapped. And depending on the occurrences of these words i want to add them to the mappings, hence improving and learning about new words that map to topic. And also changing the probabilities of words.
How should i go about doing this ? Is my approach the right one ?
Which programming language would be best suited for the implementation ?
Existing Implementations of Naive Bayes
You would probably be better off just using one of the existing packages that supports document classification using naive Bayes, e.g.:
Python - To do this using the Python based Natural Language Toolkit (NLTK), see the Document Classification section in the freely available NLTK book.
Ruby - If Ruby is more of your thing, you can use the Classifier gem. Here's sample code that detects whether Family Guy quotes are funny or not-funny.
Perl - Perl has the Algorithm::NaiveBayes module, complete with a sample usage snippet in the package synopsis.
C# - C# programmers can use nBayes. The project's home page has sample code for a simple spam/not-spam classifier.
Java - Java folks have Classifier4J. You can see a training and scoring code snippet here.
Bootstrapping Classification from Keywords
It sounds like you want to start with a set of keywords that are known to cue for certain topics and then use those keywords to bootstrap a classifier.
This is a reasonably clever idea. Take a look at the paper Text Classication by Bootstrapping with Keywords, EM and Shrinkage by McCallum and Nigam (1999). By following this approach, they were able to improve classification accuracy from the 45% they got by using hard-coded keywords alone to 66% using a bootstrapped Naive Bayes classifier. For their data, the latter is close to human levels of agreement, as people agreed with each other about document labels 72% of the time.