Does Scikit-learn support transfer learning? - machine-learning

Does Scikit-learn support transfer learning? Please check the following code.
model clf is gotten by fit(X,y)
Can model clf2 learn on the base of clf and transfer learn by fit(X2,y2) ?
>>> from sklearn import svm
>>> from sklearn import datasets
>>> clf = svm.SVC()
>>> X, y= ....
>>> clf.fit(X, y)
SVC()
>>> import pickle
>>> s = pickle.dumps(clf)
>>> clf2 = pickle.loads(s)
>>> clf2.fit(X2,y2)
>>> clf2.predict(X[0:1])

In the context of scikit-learn there's no transfer learning as such, there is incremental learning or continuous learning or online learning.
By looking at your code, whatever you're intending to do won't work the way you're thinking here. From this scikit-learn documentation:
Calling fit() more than once will overwrite what was learned by any
previous fit()
Which means using fit() more than once on the same model will simply overwrite all the previously fitted coefficients, weights, intercept (bias), etc.
However if you want to fit a portion of your data set and then improve your model by fitting a new data, what you can do is look for estimators that include partial_fit API implementation.
If we call partial_fit() multiple times, framework will update the
existing weights instead of re-initialising them.
Another way to do incremental learning with scikit-learn is to look for algorithms that support the warm_start parameter.
From this doc:
warm_start: bool, default=False
When set to True, reuse the solution of
the previous call to fit() as initialization, otherwise, just erase the
previous solution. Useless for liblinear solver.
Another example is Random forrest regressor.

Related

What is the leaf-score in LightGBM (classification)?

I have trained LightGBM on a binary-classification problem, and when plotting the tree I get some leafs like this
I struggle to find the loss-function for the classification trees - Does LightGBM minimize the cross-entropy in the binary case, and is that the leaf score?
I struggle to find the loss-function for the classification trees - Does LightGBM minimize the cross-entropy in the binary case
Yes, if you don't specify an objective then LGBMClassifier will use cross-entropy by default. The documentation in https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier says that the default for objective is "binary", and then https://lightgbm.readthedocs.io/en/latest/Parameters.html#objective notes that binary is cross-entropy loss.
and is that the leaf score?
The values like leaf 33: -2.209 ("leaf scores") represent the value of the target that will be predicted for instances in that leaf node, multiplied by the learning rate.
Negative values are possible because of the way the boosting process works. Each tree is trained on the residuals of the model up to that tree. A prediction from a model is obtained by summing the output of all trees. The XGBoost docs have a very good explanation of this: "Introduction to Boosted Trees".
In the future, please try to provide a small reproducible example explaining how you created a figure that you're asking questions about. I assumed something like the following Python code, using lightgbm 3.1.0. You can change the values of tree_index to see the different trees in the model.
import lightgbm as lgb
from sklearn.datasets import load_breast_cancer
X, y = load_breast_cancer(return_X_y=True)
gbm = lgb.LGBMClassifier(
n_estimators=10,
num_leaves=3,
max_depth=8,
min_data_in_leaf=3,
)
gbm.fit(X, y)
# visualize tree structure as a directed graph
ax = lgb.plot_tree(
gbm,
tree_index=0,
figsize=(15, 8),
show_info=[
'data_percentage',
]
)
# visualize tree structure in a dataframe
gbm.booster_.trees_to_dataframe()

Explanation Needed for Autokeras's AutoModel and GraphAutoModel

I understand what AutoKeras ImageClassifier does (https://autokeras.com/image_classifier/)
clf = ImageClassifier(verbose=True, augment=False)
clf.fit(x_train, y_train, time_limit=12 * 60 * 60)
clf.final_fit(x_train, y_train, x_test, y_test, retrain=True)
y = clf.evaluate(x_test, y_test)
But i am unable to Understand what does AutoModel class (https://autokeras.com/auto_model/) does, or how is it different from ImageClassifier
autokeras.auto_model.AutoModel(
inputs,
outputs,
name="auto_model",
max_trials=100,
directory=None,
objective="val_loss",
tuner="greedy",
seed=None)
Documentation for Arguments Inputs and Outputs Says
inputs: A list of or a HyperNode instance. The input node(s) of the AutoModel.
outputs: A list of or a HyperHead instance. The output head(s) of the AutoModel.
What is HyperNode Instance ?
Similarly, what is GraphAutoModel class ? (https://autokeras.com/graph_auto_model/)
autokeras.auto_model.GraphAutoModel(
inputs,
outputs,
name="graph_auto_model",
max_trials=100,
directory=None,
objective="val_loss",
tuner="greedy",
seed=None)
Documentation Reads
A HyperModel defined by a graph of HyperBlocks. GraphAutoModel is a subclass of HyperModel. Besides the HyperModel properties, it also has a tuner to tune the HyperModel. The user can use it in a similar way to a Keras model since it also has fit() and predict() methods.
What is HyperBlocks ?
If Image Classifier automatically does HyperParameter Tuning, what is the use of GraphAutoModel ?
Links to Any Documents / Resources for better understanding of AutoModel and GraphAutoModel appreciated .
Having worked with autokeras recently, I can share my little knowledge.
Task API
When doing a classical task such as image classification/regression, text classification/regression, ..., you can use the simplest APIs provided by autokeras called Task API: ImageClassifier, ImageRegressor, TextClassifier, TextRegressor, ... In this case you have one input (image or text or tabular data, ...) and one output (classification, regression).
Automodel
However when you are in a situation where you have for example a task that requires multi inputs/outputs architecture, then you cannot use directly Task API, and this is where Automodel comes into play with the I/O API. you can check the example provided in the documentation where you have two inputs (image and structured data) and two outputs (classification and regression)
GraphAutoModel
GraphAutomodel works like keras functional API. It assembles different blocks (Convolutions, LSTM, GRU, ...) and create a model using this block, then it will look for the best hyperparameters given this architecture you provided. Suppose for instance I want to do a binary classification task using time series as input data.
First let's generate a toy dataset :
import numpy as np
import autokeras as ak
x = np.random.randn(100, 7, 3)
y = np.random.choice([0, 1], size=100, p=[0.5, 0.5])
Here x is a time series of 100 samples, each sample is a sequence of length 7 and a features dimension of 3. The corresponding target variable y is binary (0, 1).
Using GraphAutomodel, I can specify the architecture I want, using what is called HyperBlocks. There are many blocks: Conv, RNN, Dense, ... check the full list here.
In my case I want to use RNN blocks to create a model because I have time series data :
input_layer = ak.Input()
rnn_layer = ak.RNNBlock(layer_type="lstm")(input_layer)
dense_layer = ak.DenseBlock()(rnn_layer)
output_layer = ak.ClassificationHead(num_classes=2)(dense_layer)
automodel = ak.GraphAutoModel(input_layer, output_layer, max_trials=2, seed=123)
automodel.fit(x, y, validation_split=0.2, epochs=2, batch_size=32)
(If you are not familiar with the above style of defining model, then you should check the keras functional API documentation).
So in this example I have more flexibility for creating the skeleton of architecture I would like to use : LSTM block followed by a Dense layer, followed by a Classification layer, However I didn't specify any hyperparameter, (number of lstm layers, number of dense layers, size of lstm layers, size of dense layers, activation functions, dropout, batchnorm, ....), Autokeras will do the hyperparameters tuning automatically based on the architecture (skeleton) I provided.

How to load unlabelled data for sentiment classification after training SVM model?

I am trying to do sentiment classification and I used sklearn SVM model. I used the labeled data to train the model and got 89% accuracy. Now I want to use the model to predict the sentiment of unlabeled data. How can I do that? and after classification of unlabeled data, how to see whether it is classified as positive or negative?
I used python 3.7. Below is the code.
import random
import pandas as pd
data = pd.read_csv("label data for testing .csv", header=0)
sentiment_data = list(zip(data['Articles'], data['Sentiment']))
random.shuffle(sentiment_data)
train_x, train_y = zip(*sentiment_data[:350])
test_x, test_y = zip(*sentiment_data[350:])
from nltk import word_tokenize
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn import metrics
clf = Pipeline([
('vectorizer', CountVectorizer(analyzer="word",
tokenizer=word_tokenize,
preprocessor=lambda text: text.replace("<br />", " "),
max_features=None)),
('classifier', LinearSVC())
])
clf.fit(train_x, train_y)
pred_y = clf.predict(test_x)
print("Accuracy : ", metrics.accuracy_score(test_y, pred_y))
print("Precision : ", metrics.precision_score(test_y, pred_y))
print("Recall : ", metrics.recall_score(test_y, pred_y))
When I run this code, I get the output:
ConvergenceWarning: Liblinear failed to converge, increase the number of iterations. "the number of iterations.", ConvergenceWarning)
Accuracy : 0.8977272727272727
Precision : 0.8604651162790697
Recall : 0.925
What is the meaning of ConvergenceWarning?
Thanks in Advance!
What is the meaning of ConvergenceWarning?
As Pavel already mention, ConvergenceWArning means that the max_iteris hitted, you can supress the warning here: How to disable ConvergenceWarning using sklearn?
Now I want to use the model to predict the sentiment of unlabeled
data. How can I do that?
You will do it with the command: pred_y = clf.predict(test_x), the only thing you will adjust is :pred_y (this is your free choice), and test_x, this should be your new unseen data, it has to have the same number of features as your data test_x and train_x.
In your case as you are doing:
sentiment_data = list(zip(data['Articles'], data['Sentiment']))
You are forming a tuple: Check this out
then you are shuffling it and unzip the first 350 rows:
train_x, train_y = zip(*sentiment_data[:350])
Here you train_x is the column: data['Articles'], so all you have to do if you have new data:
new_ data = pd.read_csv("new_data.csv", header=0)
new_y = clf.predict(new_data['Articles'])
how to see whether it is classified as positive or negative?
You can run then: pred_yand there will be either a 1 or a 0 in your outcome. Normally 0 should be negativ, but it depends on your dataset-up
Check out this site about model's persistence. Then you just load it and call predict method. Model will return predicted label. If you used any encoder (LabelEncoder, OneHotEncoder), you need to dump and load it separately.
If I were you, I'd rather do full data-driven approach and use some pretrained embedder. It'll also work for dozens of languages out-of-the-box with is quite neat.
There's LASER from facebook. There's also pypi package, though unofficial. It works just fine.
Nowadays there's a lot of pretrained models, so it shouldn't be that hard to reach near-seminal scores.
Now I want to use the model to predict the sentiment of unlabeled data. How can I do that? and after classification of unlabeled data, how to see whether it is classified as positive or negative?
Basically, you aggregate unlabeled data in same way as train_x or test_x is generated. Probably, it's 2D matrix of shape n_samples x 1, which you would then use in clf.predict to obtain predictions. clf.predict outputs most probable class. In your case 0 is negative and 1 is positive, but it's hard to tell without the dataset.
What is the meaning of ConvergenceWarning?
LinearSVC model is optimized using iterative algorithm. There is an argument max_iter (1000 by default) that controls maximum amount of iterations. If stopping criteria wasn't met during this process, you will get ConvergenceWarning. It shouldn't bother you much, as long as you have acceptable performance in terms of accuracy, or other metrics.

muti output regression in xgboost

Is it possible to train a model in Xgboost that have multiple continuous outputs (multi regression)?
What would be the objective to train such a model?
Thanks in advance for any suggestions
My suggestion is to use sklearn.multioutput.MultiOutputRegressor as a wrapper of xgb.XGBRegressor. MultiOutputRegressor trains one regressor per target and only requires that the regressor implements fit and predict, which xgboost happens to support.
# get some noised linear data
X = np.random.random((1000, 10))
a = np.random.random((10, 3))
y = np.dot(X, a) + np.random.normal(0, 1e-3, (1000, 3))
# fitting
multioutputregressor = MultiOutputRegressor(xgb.XGBRegressor(objective='reg:linear')).fit(X, y)
# predicting
print np.mean((multioutputregressor.predict(X) - y)**2, axis=0) # 0.004, 0.003, 0.005
This is probably the easiest way to regress multi-dimension targets using xgboost as you would not need to change any other part of your code (if you were using the sklearn API originally).
However this method does not leverage any possible relation between targets. But you can try to design a customized objective function to achieve that.
Multiple output regression is now available in the nightly build of XGBoost, and will be included in XGBoost 1.6.0.
See https://github.com/dmlc/xgboost/blob/master/demo/guide-python/multioutput_regression.py for an example.
It generates warnings: reg:linear is now deprecated in favor of reg:squarederror, so I update an answer based on #ComeOnGetMe's
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.multioutput import MultiOutputRegressor
# get some noised linear data
X = np.random.random((1000, 10))
a = np.random.random((10, 3))
y = np.dot(X, a) + np.random.normal(0, 1e-3, (1000, 3))
# fitting
multioutputregressor = MultiOutputRegressor(xgb.XGBRegressor(objective='reg:squarederror')).fit(X, y)
# predicting
print(np.mean((multioutputregressor.predict(X) - y)**2, axis=0))
Out:
[2.00592697e-05 1.50084441e-05 2.01412247e-05]
I would place a comment but I lack the reputation. In addition to #Jesse Anderson, to install the most recent version, select the top link from here:
https://s3-us-west-2.amazonaws.com/xgboost-nightly-builds/list.html?prefix=master/
Make sure to select the one for your operating system.
Use pip install to install the wheel. I.e. for macOS:
pip install https://s3-us-west-2.amazonaws.com/xgboost-nightly-builds/master/xgboost-1.6.0.dev0%2B4d81c741e91c7660648f02d77b61ede33cef8c8d-py3-none-macosx_10_15_x86_64.macosx_11_0_x86_64.macosx_12_0_x86_64.whl
You can use Linear regression, random forest regressors and some other related algorithms in Scikit-learn to produce multi-output regression. Not sure about XGboost. The boosting regressor in Scikit does not allow multiple outputs. For people who asked, when it may be necessary one example would be to forecast multi-steps of time-series a head.
Based on the above discussion, I have extended the univariate XGBoostLSS to a multivariate framework called Multi-Target XGBoostLSS Regression that models multiple targets and their dependencies in a probabilistic regression setting. Code follows soon.

Is kernel regression the same as linear kernel regression?

i wanted to code the linear kernel regression in sklearn so i made this code :
model = LinearRegression()
weights = rbf_kernel(X_train,X_test)
for i in range(weights.shape[1]):
model.fit(X_train,y_train,weights[:,i])
model.predict(X_test[i])
then i found that there is KernelRidge in sklearn :
model = KernelRidge(kernel='rbf')
model.fit(X_train,y_train)
pred = model.predict(X_train)
my question is:
1-what is the difference between these 2 codes?
2-in model.fit() that come after KernelRidge(), i found in the documentation that i can add a third argument "weight" to fit() function, i would i do that if i already applied a kernel function to the model?
What is the difference between these two code snippets?
Basically, they have nothing in common. Your first code snippet implements linear regression, with arbitrary set weights of samples. (How did you even come up with calling rbf_kernel this way?) This is still just a linear model, nothing more. You simply assigned (a bit randomly) which samples are important and then looped over features (?). This makes no sense at all. In general: what you have done with rbf_kernel is simply wrong; this is completely not how it is supposed to be used (and why it gave you errors when you tried to pass it to the fit method and you ended up doing a loop and passing each column separately).
Example of fitting such a model to data which is a cosine (thus 0 in mean):
I found in the documentation for the model.fit() function that comes after KernelRidge() that I can add a third argument, weight. Would I do that if I had already applied a kernel function to the model?
This is actual kernel method, kernel is not samples weighting. (One might use kernel function to assign weights, but this is not the meaning of kernel in "linear kernel regression" or in general "kernel methods".) Kernel is a method of introducing nonlinearity to the classifier, which comes from the fact that many methods (including linear regression) can be expressed as dot products between vectors, which can be substituted by kernel function leading to solving the problem in different space (Reproducing Hilbert Kernel Space), which might have very high complexity (like the infinite dimensional space of continuous functions induced by the RBF kernel).
Example of fitting to the same data as above:
from sklearn.linear_model import LinearRegression
from sklearn.kernel_ridge import KernelRidge
import numpy as np
from matplotlib import pyplot as plt
X = np.linspace(-10, 10, 100).reshape(100, 1)
y = np.cos(X)
for model in [LinearRegression(), KernelRidge(kernel='rbf')]:
model.fit(X, y)
p = model.predict(X)
plt.figure()
plt.title(model.__class__.__name__)
plt.scatter(X[:, 0], y)
plt.plot(X, p)
plt.show()

Resources