Failing termination check with a with-abstraction - agda

I'm surprised to see the following function fail the termination check. y ∷ ys is structurally smaller than x ∷ y ∷ ys, isn't it?
open import Data.List using (List ; [] ; _∷_)
open import Data.Nat using (ℕ ; zero ; suc)
open import Data.Nat.Properties using (<-cmp)
foo : List ℕ → ℕ
foo [] = 0
foo (x ∷ []) = 1
foo (x ∷ y ∷ ys) with <-cmp x y
... | _ = suc (foo (y ∷ ys))
Doing either (or both) of the following two things seems to make the termination checker see the light:
Removing the with-abstraction.
Changing the last clause to match with y ∷ ys instead of x ∷ y ∷ ys and recurse with ys instead of y ∷ ys. (And also changing <-cmp x y to <-cmp y y for a lack of xs.)
Now I am even more confused than I usually am and I'm wondering: What's going on, how does the with-abstraction (and its helper function) factor into all of this, and what do I do about it?
I've seen the other questions and answers concerning termination, but - unlike those more complicated cases - the case at hand seems to be about basic structural recursion, no?
Update
I just found an answer to the question, but if anybody would like to shed more light on what exactly is going on, e.g., how exactly the with-abstraction interferes with termination checking, then I'd be more than happy to accept that answer instead.

Turns out that this is a known limitation of the termination checker since 2.6.1. See the Termination checking section in the change log for 2.6.1: https://github.com/agda/agda/blob/v2.6.1/CHANGELOG.md
The pattern match and the recursive call won't work with a with-abstraction between them. A workaround is to also abstract over the recursive call in order to pull it up into the with-abstraction (from its original location after the with-abstraction).
open import Data.List using (List ; [] ; _∷_)
open import Data.Nat using (ℕ ; zero ; suc)
open import Data.Nat.Properties using (<-cmp)
foo : List ℕ → ℕ
foo [] = 0
foo (x ∷ []) = 1
foo (x ∷ y ∷ ys) with foo (y ∷ ys) | <-cmp x y
... | rec | _ = suc rec
In the above code, the pattern match x ∷ y ∷ ys and the recursive call foo (y ∷ ys) don't straddle the with-abstraction any longer and the termination check succeeds.
The above fixes my issue, but the change log describes more delicate cases that require a little more care.
This issue is tracked in Agda issue #59 (!), which contains more details and a history of the problem: https://github.com/agda/agda/issues/59

Related

How to recover intermediate computation results from a function using "with"?

I wrote a function on the natural numbers that uses the operator _<?_ with the with-abstraction.
open import Data.Maybe
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
fun : ℕ → ℕ → Maybe ℕ
fun x y with x <? y
... | yes _ = nothing
... | no _ = just y
I would like to prove that if the result of computing with fun is nothing then the original two values (x and y) fulfill x < y.
So far all my attempts fall short to prove the property:
prop : ∀ (x y)
→ fun x y ≡ nothing
→ x < y
prop x y with fun x y
... | just _ = λ()
... | nothing = λ{refl → ?} -- from-yes (x <? y)}
-- This fails because the pattern matching is incomplete,
-- but it shouldn't. There are no other cases
prop' : ∀ (x y)
→ fun x y ≡ nothing
→ x < y
prop' x y with fun x y | x <? y
... | nothing | yes x<y = λ{refl → x<y}
... | just _ | no _ = λ()
--... | _ | _ = ?
In general, I've found that working with the with-abstraction is painful. It is probably due to the fact that with and | hide some magic in the background. I would like to understand what with and | really do, but the "Technical details" currently escape my understanding. Do you know where to look for to understand how to interpret them?
Concrete solution
You need to case-split on the same element on which you case-split in your function:
prop : ∀ x y → fun x y ≡ nothing → x < y
prop x y _ with x <? y
... | yes p = p
In the older versions of Agda, you would have had to write the following:
prop-old : ∀ x y → fun x y ≡ nothing → x < y
prop-old x y _ with x <? y
prop-old _ _ refl | yes p = p
prop-old _ _ () | no _
But now you are able to completely omit a case when it leads to a direct contradiction, which is, in this case, that nothing and just smth can never be equal.
Detailed explanation
To understand how with works you first need to understand how definitional equality is used in Agda to reduce goals. Definitional equality binds a function call with its associated expression depending on the structure of its input. In Agda, this is easily seen by the use of the equal sign in the definition of the different cases of a function (although since Agda builds a tree of cases some definitional equalities might not hold in some cases, but let's forget this for now).
Let us consider the following definition of the addition over naturals:
_+_ : ℕ → ℕ → ℕ
zero + b = b
(suc a) + b = suc (a + b)
This definition provides two definitional equalities that bind zero + b with b and (suc a) + b with suc (a + b). The good thing with definitional equalities (as opposed to propositional equalities) is that Agda automatically uses them to reduce goals whenever possible. This means that, for instance, if in a further goal you have the element zero + p for any p then Agda will automatically reduce it to p.
To allow Agda to do such reduction, which is fundamental in most cases, Agda needs to know which of these two equalities can be exploited, which means a case-split on the first argument of this addition has to be made in any further proof about addition for a reduction to be possible. (Except for composite proofs based on other proofs which use such case-splits).
When using with you basically add additional definitional equalities depending on the structure of the additional element. This only makes sense, understanding that, that you need to case-split on said element when doing proofs about such a function, in order for Agda once again to be able to make use of these definitional equalities.
Let us take your example and apply this reasoning to it, first without the recent ability to omit impossible cases. You need to prove the following statement:
prop-old : ∀ x y → fun x y ≡ nothing → x < y
Introducing parameters in the context, you write the following line:
prop-old x y p = ?
Having written that line, you need to provide a proof of x < y with the elements in the context. x and y are just natural so you expect p to hold enough information for this result to be provable. But, in this case, p is just of type fun x y ≡ nothing which does not give you enough information. However, this type contains a call to function fun so there is hope ! Looking at the definition of fun, we can see that it yields two definitional equalities, which depend on the structure of x <? y. This means that adding this parameter to the proof by using with once more will allow Agda to make use of these equalities. This leads to the following code:
prop-old : ∀ x y → fun x y ≡ nothing → x < y
prop-old x y p with x <? y
prop-old _ _ p | yes q = ?
prop-old _ _ p | no q = ?
At that point, not only did Agda case-split on x <? y, but it also reduced the goal because it is able, in both cases, to use a specific definitional equality of fun. Let us take a closer look at both cases:
In the yes q case, p is now of type nothing ≡ nothing and q is of type x < y which is exactly what you want to prove, which means the goal is simply solved by:
prop-old _ _ p | yes q = q
I the no q case, something more interesting happens, which is somewhat harder to understand. After reduction, p is now of type just y ≡ nothing because Agda could use the second definitional equality of fun. Since _≡_ is a data type, it is possible to case-split on p which basically asks Agda: "Look at this data type and give me all the possible constructors for an element of type just y ≡ nothing". At first, Agda only finds one possible constructor, refl, but this constructor only builds an element of a type where both sides of the equality are the same, which is not the case here by definition because just and nothing are two distinct constructors from the same data type, Maybe. Agda then concludes that there are no possible constructors that could ever build an element of such type, hence this case is actually not possible, which leads to Agda replacing p with the empty pattern () and dismissing this case. This line is thus simply:
prop-old _ _ () | no _
In the more recent versions of Agda, as I explained earlier, some of these steps are done directly by Agda which allows us to directly omit impossible cases when the emptiness of a pattern can be deduced behind the curtain, which leads to the prettier:
prop : ∀ x y → fun x y ≡ nothing → x < y
prop x y _ with x <? y
... | yes p = p
But it is the same process, just done a bit more automatically. Hopefully, these elements will be of some use in your journey towards understanding Agda.

How to prove element addition is injective for a cubical finite multi set?

I'm playing around with the type of finite multisets as defined in the cubical standard library here:
https://github.com/agda/cubical/blob/0d272ccbf6f3b142d1b723cead28209444bc896f/Cubical/HITs/FiniteMultiset/Base.agda#L15
data FMSet (A : Type ℓ) : Type ℓ where
[] : FMSet A
_∷_ : (x : A) → (xs : FMSet A) → FMSet A
comm : ∀ x y xs → x ∷ y ∷ xs ≡ y ∷ x ∷ xs
trunc : isSet (FMSet A)
I was able to reproduce the proofs for count extensionality and one of my lemmas I showed that you can remove a element from both sides of an equality and keep the equality.
It was similar to this one: https://github.com/agda/cubical/blob/0d272ccbf6f3b142d1b723cead28209444bc896f/Cubical/HITs/FiniteMultiset/Properties.agda#L183
remove1-≡-lemma : ∀ {a} {x} xs → a ≡ x → xs ≡ remove1 a (x ∷ xs)
remove1-≡-lemma {a} {x} xs a≡x with discA a x
... | yes _ = refl
... | no a≢x = ⊥.rec (a≢x a≡x)
My proofs weren't using the same syntax but in the core libraries syntax it was
cons-path-lemma : ∀ {x} xs ys → (x ∷ xs) ≡ (x ∷ ys) → xs ≡ ys
where the proof is using remove1-≡-lemma path composed on both side of a path which is the argument path functionally composed with remove1 x.
This requires the type of the values to have decidable equality as remove1 doesn't make sense without it. But the lemma itself doesn't mention decidable equality, and so I thought I would try to prove it without having that as a hypothesis. Its now a week later and I'm at my wits end because this seems so 'obvious' but so stubborn to prove.
I'm thinking that my intuition about this being provable may be coming from my classical math background, and so it doesn't follow constructively/contiuously.
So my question is: Is this provable with no assumptions on the element type? If so what would the general structure of the proof look like, I have had trouble getting proofs that want to induct over the two FMSets simultaneously to work (as I'm mostly guessing when trying to get paths to line up as necessary). If it is not provable with no assumptions, is it possible to show that it is equivalent in some form to the necessary assumptions?
I can't offer a proof but an argument why it should be provable without assuming decidability. I think finite multisets can be represented as functions Fin n -> A and equality between multisets f and g is given by a permutation phi : Fin n ~ Fin n, (that is invertible functions on Fin n) such that f o phi = g. Now
(a :: f) 0 = a
(a :: f) (suc i) = f i
If phi : Fin (suc n) ~ Fin (suc n) proves that a :: f = a :: g you can construct a psi : Fin n ~ Fin n which proves that f = g. If phi 0 = 0 then psi n = phi (suc n) otherwise you have to obtain psi by assigning phi^-1 0 to phi 0. However this case analysis is on Fin n.
I think representing the permutation group by swapping adjacent elements is just an inconvenient representation for this problem.

With-abstraction and equality

In the following example
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
postulate
f : Nat → Nat
g : ∀{x y} → f x ≡ suc y → Nat
h : Nat → Nat
h x with f x
h x | zero = zero
h x | suc y = g {x} {y} {!refl!}
Agda doesn't accept refl for an argument.
The main questions are,
what am I doing wrong?
what is the correct/optimal/established/preferred way of proving stuff like this?
And of course any insights into Agda's behavior are greatly appreciated.
≡-Reasoning and 'with' patterns and Agda: type isn't simplified in with block should answer your questions. The official docs describe how to do what you want, but they don't seem to be too beginner-friendly.

Agda: rewriting instead of explicit coercion in type definition?

When dealing with equalities on types in Agda, it is often necessary to coerce the inhabitants the types using a hand-made coercion like
coerce : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → A → B
coerce refl x = x
It was discussed here that explicit coercion of terms could sometimes be avoided using rewriting. I was wondering if this technique worked as well when defining types. So I wrote a little example where f,g : A → Set are two (extentionally) equal dependent types and a property p : A → Set where p x state that every element y : f x is equal to every element z : g x, that is y ≡ z. The last equality is ill-typed, as one can expect since y : f x and z : g x do not share the same type a priori, however I was hoping that rewriting could allow it. Something like:
open import Relation.Binary.PropositionalEquality
postulate A : Set
postulate B : Set
postulate f : A → Set
postulate g : A → Set
postulate f≡g : ∀ {x} → (f x) ≡ (g x)
p : {x : A} → Set
p {x} rewrite f≡g {x} = (y : f x ) (z : g x) → y ≡ z
But the error is still there, even though the rewrite advice is accepted. So, is there a way to make Agda accept this definition without using an explicit coercion, like
p {x} = (y : f x ) (z : g x) → (coerce f≡g y) ≡ z
?
Thank you
Here's a variation of your code that does what you want:
open import Relation.Binary.PropositionalEquality
postulate
A : Set
f : A → Set
g : A → Set
f≡g : ∀ x → f x ≡ g x
p : (x : A) → Set
p x = ∀ y z → R y z
where
R : f x → g x → Set
R fx gx rewrite f≡g x = fx ≡ gx
Why does this work when your version doesn't? rewrite affects two things: (a) the types of variables introduced in patterns left of the rewrite; (b) the goal type. If you look at your rewrite, when it takes effect, there is no f x to be found, so it does nothing. My rewrite, on the other hand, changes the type of fx : f x to g x because fx is introduced before the rewrite.
However, I would be surprised if this helped you much. In my experience, heterogeneous equality (i.e. equality between things of different types) remains annoying, regardless of what tricks you throw at it. For example, consider this variation of your idea, where we define a type R by rewriting:
R : ∀ {x} → f x → g x → Set
R {x} fx gx rewrite f≡g x = fx ≡ gx
R is a heterogenous relation which 'looks' reflexive. However, the closest we can come to stating reflexivity is
coerce : {A B : Set} → A ≡ B → A → B
coerce refl x = x
R-refl : ∀ {x} {fx : f x} → R fx (coerce (f≡g x) fx)
R-refl {x} rewrite f≡g x = refl
Without the coerce, fx would have the wrong type, and so we're back to the problem that we have these coercions polluting our types. This is not necessarily a deal breaker, but it complicates things. So, my advice is to avoid heterogeneous relations if possible.

Using multiple EqReasoning instantiations conveniently

Is there a way to conveniently use multiple instantiations of EqReasoning where the underlying Setoid is not necessarily semantic equality (i.e. ≡-Reasoning cannot be used)? The reason that ≡-Reasoning is convenient is that the type argument is implicit and it uniquely determines the Setoid in use by automatically selecting semantic equality. When using arbitrary Setoids there is no such unique selection. However a number of structures provide a canonical way to lift a Setoid:
Data.Maybe and Data.Covec have a setoid member.
Data.Vec.Equality.Equality provides enough definitions to write a canonical Setoid lifting for Vec as well. Interestingly there is also is a slightly different equality available at Relation.Binary.Vec.Pointwise, but it does not provide a direct lifting either albeit implementing all the necessary bits.
Data.List ships a Setoid lifting in Relation.Binary.List.Pointwise.
Data.Container also knows how to lift a Setoid.
By using any of these structures, one automatically gets to work with multiple Setoids even if one started out with one. When proofs use these structures (multiple of them in a single proof), it becomes difficult to write down the proof, because EqReasoning must be instantiated for all of them even though each particular Setoid is kind of obvious. This can be done by renaming begin_, _≈⟨_⟩_ and _∎, but I don't consider this renaming convenient.
Consider for example, a proof in the Setoid of Maybe where a sequence of arguments needs to be wrapped in Data.Maybe.Eq.just (think cong just) or a proof in an arbitrary Setoid that temporarily needs to wrap things in a just constructor exploiting its injectivity.
Normally, the only way Agda can pick something for you is when it is uniquely determined by the context. In the case of EqReasoning, there isn't usually enough information to pin down the Setoid, even worse actually: you could have two different Setoids over the same Carrier and _≈_ (consider for example two definitionally unequal proofs of transitivity in the isEquivalence field).
However, Agda does allow special form of implicit arguments, which can be filled as long as there is only one value of the desired type. These are known as instance arguments (think instance as in Haskell type class instances).
To demonstrate roughly how this works:
postulate
A : Set
a : A
Now, instance arguments are wrapped in double curly braces {{}}:
elem : {{x : A}} → A
elem {{x}} = x
If we decide to later use elem somewhere, Agda will check for any values of type A in scope and if there's only one of them, it'll fill that one in for {{x : A}}. If we added:
postulate
b : A
Agda will now complain that:
Resolve instance argument _x_7 : A. Candidates: [a : A, b : A]
Because Agda already allows you to perform computations on type level, instance arguments are deliberately limited in what they can do, namely Agda won't perform recursive search to fill them in. Consider for example:
eq : ... → IsEquivalence _≈_ → IsEquivalence (Eq _≈_)
where Eq is Data.Maybe.Eq mentioned in your question. When you then require Agda to fill in an instance argument of a type IsEquivalence (Eq _≈_), it won't try to find something of type IsEquivalence _≈_ and apply eq to it.
With that out of the way, let's take a look at what could work. However, bear in mind that all this stands on unification and as such you might need to push it in the right direction here and there (and if the types you are dealing with become complex, unification might require you to give it so many directions that it won't be worth it in the end).
Personally, I find instance arguments a bit fragile and I usually avoid them (and from a quick check, it would seem that so does the standard library), but your experience might vary.
Anyways, here we go. I constructed a (totally nonsensical) example to demonstrate how to do it. Some boilerplate first:
open import Data.Maybe
open import Data.Nat
open import Relation.Binary
import Relation.Binary.EqReasoning as EqR
To make this example self-contained, I wrote some kind of Setoid with natural numbers as its carrier:
data _≡ℕ_ : ℕ → ℕ → Set where
z≡z : 0 ≡ℕ 0
s≡s : ∀ {m n} → m ≡ℕ n → suc m ≡ℕ suc n
ℕ-setoid : Setoid _ _
ℕ-setoid = record
{ _≈_ = _≡ℕ_
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
where
refl : Reflexive _≡ℕ_
refl {zero} = z≡z
refl {suc _} = s≡s refl
sym : Symmetric _≡ℕ_
sym z≡z = z≡z
sym (s≡s p) = s≡s (sym p)
trans : Transitive _≡ℕ_
trans z≡z q = q
trans (s≡s p) (s≡s q) = s≡s (trans p q)
Now, the EqReasoning module is parametrized over a Setoid, so usually you do something like this:
open EqR ℕ-setoid
However, we'd like to have the Setoid parameter to be implicit (instance) rather than explicit, so we define and open a dummy module:
open module Dummy {c ℓ} {{s : Setoid c ℓ}} = EqR s
And we can write this simple proof:
idʳ : ∀ n → n ≡ℕ (n + 0)
idʳ 0 = z≡z
idʳ (suc n) = begin
suc n ≈⟨ s≡s (idʳ n) ⟩
suc (n + 0) ∎
Notice that we never had to specify ℕ-setoid, the instance argument picked it up because it was the only type-correct value.
Now, let's spice it up a bit. We'll add Data.Maybe.setoid into the mix. Again, because instance arguments do not perform a recursive search, we'll have to define the setoid ourselves:
Maybeℕ-setoid = setoid ℕ-setoid
_≡M_ = Setoid._≈_ Maybeℕ-setoid
I'm going to postulate few stupid things just to demonstrate that Agda indeed picks correct setoids:
postulate
comm : ∀ m n → (m + n) ≡ℕ (n + m)
eq0 : ∀ n → n ≡ℕ 0
eq∅ : just 0 ≡M nothing
lem : ∀ n → just (n + 0) ≡M nothing
lem n = begin
just (n + 0) ≈⟨ just
(begin
n + 0 ≈⟨ comm n 0 ⟩
n ≈⟨ eq0 n ⟩
0 ∎
)⟩
just 0 ≈⟨ eq∅ ⟩
nothing ∎
I figured an alternative to the proposed solution using instance arguments that slightly bends the requirements, but fits my purpose. The major burden in the question was having to explicitly open EqReasoning multiple times and especially having to invent new names for the contained symbols. A slight improvement would be to pass the correct Setoid once per relation proof. In other words passing it to begin_ or _∎ somehow. Then we could make the Setoid implicit for all the other functions!
import Relation.Binary.EqReasoning as EqR
import Relation.Binary using (Setoid)
module ExplicitEqR where
infix 1 begin⟨_⟩_
infixr 2 _≈⟨_⟩_ _≡⟨_⟩_
infix 2 _∎
begin⟨_⟩_ : ∀ {c l} (X : Setoid c l) → {x y : Setoid.Carrier X} → EqR._IsRelatedTo_ X x y → Setoid._≈_ X x y
begin⟨_⟩_ X p = EqR.begin_ X p
_∎ : ∀ {c l} {X : Setoid c l} → (x : Setoid.Carrier X) → EqR._IsRelatedTo_ X x x
_∎ {X = X} = EqR._∎ X
_≈⟨_⟩_ : ∀ {c l} {X : Setoid c l} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → Setoid._≈_ X x y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
_≈⟨_⟩_ {X = X} = EqR._≈⟨_⟩_ X
_≡⟨_⟩_ : ∀ {c l} {X : Setoid c l} → (x : Setoid.Carrier X) → {y z : Setoid.Carrier X} → x ≡ y → EqR._IsRelatedTo_ X y z → EqR._IsRelatedTo_ X x z
_≡⟨_⟩_ {X = X} = EqR._≡⟨_⟩_ X
Reusing the nice example from Vitus answer, we can write it:
lem : ∀ n → just (n + 0) ≡M nothing
lem n = begin⟨ Data.Maybe.setoid ℕ-setoid ⟩
just (n + 0) ≈⟨ just
(begin⟨ ℕ-setoid ⟩
n + 0 ≈⟨ comm n 0 ⟩
n ≈⟨ eq0 n ⟩
0 ∎
)⟩
just 0 ≈⟨ eq∅ ⟩
nothing ∎
where open ExplicitEqR
One still has to mention the Setoids in use, to avoid the use of instance arguments as presented by Vitus. However the technique makes it significantly more convenient.

Resources