Related
Note: I am migrating this question from Data Science Stack Exchange, where it received little exposure.
I am trying to implement an OCR solution to identify the numbers read from the picture of a screen.
I am adapting this pyimagesearch tutorial to my problem.
Because I am dealing with a dark background, I first invert the image, before converting it to grayscale and thresholding it:
inverted_cropped_image = cv2.bitwise_not(cropped_image)
gray = get_grayscale(inverted_cropped_image)
thresholded_image = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)[1]
Then I call pytesseract's image_to_data function to output a dictionary containing the different text regions and their confidence intervals:
from pytesseract import Output
results = pytesseract.image_to_data(thresholded_image, output_type=Output.DICT)
Finally I iterate over results and plot them when their confidence exceeds a user defined threshold (70%). What bothers me, is that my script identifies everything in the image except the number that I would like to recognize (1227.938).
My first guess is that the image_to_data parameters are not set properly.
Checking this website, I selected a page segmentation mode (psm) of 11 (sparse text) and tried whitelisting numbers only (tessedit_char_whitelist=0123456789m.'):
results = pytesseract.image_to_data(thresholded_image, config='--psm 11 --oem 3 -c tessedit_char_whitelist=0123456789m.', output_type=Output.DICT)
Alas, this is even worse, and the script now identifies nothing at all!
Do you have any suggestion? Am I missing something obvious here?
EDIT #1:
At Ann Zen's request, here's the code used to obtain the first image:
import imutils
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pytesseract
from pytesseract import Output
def get_grayscale(image):
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
filename = "IMAGE.JPG"
cropped_image = cv2.imread(filename)
inverted_cropped_image = cv2.bitwise_not(cropped_image)
gray = get_grayscale(inverted_cropped_image)
thresholded_image = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY)[1]
results = pytesseract.image_to_data(thresholded_image, config='--psm 11 --oem 3 -c tessedit_char_whitelist=0123456789m.', output_type=Output.DICT)
color = (255, 255, 255)
for i in range(0, len(results["text"])):
x = results["left"][i]
y = results["top"][i]
w = results["width"][i]
h = results["height"][i]
text = results["text"][i]
conf = int(results["conf"][i])
print("Confidence: {}".format(conf))
if conf > 70:
print("Confidence: {}".format(conf))
print("Text: {}".format(text))
print("")
text = "".join([c if ord(c) < 128 else "" for c in text]).strip()
cv2.rectangle(cropped_image, (x, y), (x + w, y + h), color, 2)
cv2.putText(cropped_image, text, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX,1.2, color, 3)
cv2.imshow('Image', cropped_image)
cv2.waitKey(0)
EDIT #2:
Rarely have I spent reputation points so well! All three replies posted so far helped me refine my algorithm.
First, I wrote a Tkinter program allowing me to manually crop the image around the number of interest (modifying the one found in this SO post)
Then I used Ann Zen's idea of narrowing down the search area around the fractional part. I am using her nifty process function to prepare my grayscale image for contour extraction: contours, _ = cv2.findContours(process(img_gray), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE). I am using RETR_EXTERNAL to avoid dealing with overlapping bounding rectangles.
I then sorted my contours from left to right. Bounding rectangles exceeding a user-defined threshold are associated with the integral part (white rectangles); otherwise they are associated with the fractional part (black rectangles).
I then extracted the characters using Esraa's approach i.e. applying a Gaussian blur prior to calling Tesseract. I used a much larger kernel (15x15 vs 3x3) to achieve this.
I am not out of the woods yet, but hopefully I will get better results by using Ahx's adaptive thresholding.
The Concept
As you have probably heard, pytesseract is not good at detecting text of different sizes on the same line as one piece of text. In your case, you want to detect the 1227.938, where the 1227 is much larger than the .938.
One way to go about solving this is to have the program estimate where the .938 is, and enlarge that part of the image. After that, pytesseract will have no problem in returning the text.
The Code
import cv2
import numpy as np
import pytesseract
def process(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY)
img_canny = cv2.Canny(thresh, 100, 100)
kernel = np.ones((3, 3))
img_dilate = cv2.dilate(img_canny, kernel, iterations=2)
return cv2.erode(img_dilate, kernel, iterations=2)
img = cv2.imread("image.png")
img_copy = img.copy()
hh = 50
contours, _ = cv2.findContours(process(img), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
if 20 * hh < cv2.contourArea(cnt) < 30 * hh:
x, y, w, h = cv2.boundingRect(cnt)
ww = int(hh / h * w)
src_seg = img[y: y + h, x: x + w]
dst_seg = img_copy[y: y + hh, x: x + ww]
h_seg, w_seg = dst_seg.shape[:2]
dst_seg[:] = cv2.resize(src_seg, (ww, hh))[:h_seg, :w_seg]
gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY)
results = pytesseract.image_to_data(thresh)
for b in map(str.split, results.splitlines()[1:]):
if len(b) == 12:
x, y, w, h = map(int, b[6: 10])
cv2.putText(img, b[11], (x, y + h + 15), cv2.FONT_HERSHEY_COMPLEX, 0.6, 0)
cv2.imshow("Result", img)
cv2.waitKey(0)
The Output
Here is the input image:
And here is the output image:
As you have said in your post, the only part you need the the decimal 1227.938. If you want to filter out the rest of the detected text, you can try tweaking some parameters. For example, replacing the 180 from _, thresh = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY) with 230 will result in the output image:
The Explanation
Import the necessary libraries:
import cv2
import numpy as np
import pytesseract
Define a function, process(), that will take in an image array, and return a binary image array that is the processed version of the image that will allow proper contour detection:
def process(img):
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY)
img_canny = cv2.Canny(thresh, 100, 100)
kernel = np.ones((3, 3))
img_dilate = cv2.dilate(img_canny, kernel, iterations=2)
return cv2.erode(img_dilate, kernel, iterations=2)
I'm sure that you don't have to do this, but due to a problem in my environment, I have to add pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe' before I can call the pytesseract.image_to_data() method, or it throws an error:
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
Read in the original image, make a copy of it, and define the rough height of the large part of the decimal:
img = cv2.imread("image.png")
img_copy = img.copy()
hh = 50
Detect the contours of the processed version of the image, and add a filter that roughly filters out the contours so that the small text remains:
contours, _ = cv2.findContours(process(img), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
if 20 * hh < cv2.contourArea(cnt) < 30 * hh:
Define the bounding box of each contour that didn't get filtered out, and use the properties to enlarge those parts of the image to the height defined for the large text (making sure to also scale the width accordingly):
x, y, w, h = cv2.boundingRect(cnt)
ww = int(hh / h * w)
src_seg = img[y: y + h, x: x + w]
dst_seg = img_copy[y: y + hh, x: x + ww]
h_seg, w_seg = dst_seg.shape[:2]
dst_seg[:] = cv2.resize(src_seg, (ww, hh))[:h_seg, :w_seg]
Finally, we can use the pytesseract.image_to_data() method to detect the text. Of course, we'll need to threshold the image again:
gray = cv2.cvtColor(img_copy, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 180, 255, cv2.THRESH_BINARY)
results = pytesseract.image_to_data(thresh)
for b in map(str.split, results.splitlines()[1:]):
if len(b) == 12:
x, y, w, h = map(int, b[6: 10])
cv2.putText(img, b[11], (x, y + h + 15), cv2.FONT_HERSHEY_COMPLEX, 0.6, 0)
cv2.imshow("Result", img)
cv2.waitKey(0)
I have been working with Tesseract for quite some time, so let me clarify something for you. Tesseract is extremely helpful if you're trying to recognize text in documents more than any other computer vision projects. It usually needs a binarized image to get a good output. Therefore, you will always need some image pre-processing.
However, after several trials in the past with all page segmentation modes, I realized that it fails when font size differs on the same line without having a space. Sometimes PSM 6 is helpful if the difference is low, but in your condition, you may try an alternative. If you don't care about the decimals, you may try the following solution:
img = cv2.imread(r'E:\Downloads\Iwzrg.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img_blur = cv2.GaussianBlur(gray, (3,3),0)
_,thresh = cv2.threshold(img_blur,200,255,cv2.THRESH_BINARY_INV)
# If using a fixed camera
new_img = thresh[0:100, 80:320]
text = pytesseract.image_to_string(new_img, lang='eng', config='--psm 6 --oem 3 -c tessedit_char_whitelist=0123456789')
OUTPUT: 1227
I would like to recommend applying another image processing method.
Because I am dealing with a dark background, I first invert the image, before converting it to grayscale and thresholding it:
You applied global thresholding and couldn't achieve the desired result.
Then you can apply either adaptive-thresholding or inRange
For the given image, if we apply the inRange threshold:
To be able to recognize the image as accurately as possible we can add a border to the top of the image and resize the image (Optional)
In the OCR section, check if the detected region contains a digit
if text.isdigit():
Then display on the image:
The result is nearly the desired value. Now you can try with the other suggested methods to find the exact value.
The problem is .938 recognized as 235, maybe resizing using different values might improve the result.
Code:
from cv2 import imread, cvtColor, COLOR_BGR2HSV as HSV, inRange, getStructuringElement, resize
from cv2 import imshow, waitKey, MORPH_RECT, dilate, bitwise_and, rectangle, putText
from cv2 import copyMakeBorder as addBorder, BORDER_CONSTANT as CONSTANT, FONT_HERSHEY_SIMPLEX
from numpy import array
from pytesseract import image_to_data, Output
bgr = imread("Iwzrg.png")
resized = resize(bgr, (800, 600), fx=0.75, fy=0.75)
bordered = addBorder(resized, 200, 0, 0, 0, CONSTANT, value=0)
hsv = cvtColor(bordered, HSV)
mask = inRange(hsv, array([0, 0, 250]), array([179, 255, 255]))
kernel = getStructuringElement(MORPH_RECT, (50, 30))
dilated = dilate(mask, kernel, iterations=1)
thresh = 255 - bitwise_and(dilated, mask)
data = image_to_data(thresh, output_type=Output.DICT)
for i in range(0, len(data["text"])):
x = data["left"][i]
y = data["top"][i]
w = data["width"][i]
h = data["height"][i]
text = data["text"][i]
if text.isdigit():
print("Text: {}".format(text))
print("")
text = "".join([c if ord(c) < 128 else "" for c in text]).strip()
rectangle(thresh, (x, y), (x + w, y + h), (0, 255, 0), 2)
putText(thresh, text, (x, y - 10), FONT_HERSHEY_SIMPLEX, 1.2, (0, 0, 255), 3)
imshow("", thresh)
waitKey(0)
I am trying to track the pupil, using OpenCV assuming the fact pupil is always black, however the biggest challenge I am going through is the reflection on the pupil, is there a way I can change the color of the glare with the color of the pupil that is visible around it?
Please find the code block below
from imutils import face_utils
import numpy as np
import argparse
import imutils
import dlib
import cv2
from matplotlib import pyplot as plt
import sys
import os
import time
import math
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
help="path to facial landmark predictor")
ap.add_argument("-i", "--image", required=True,
help="path to input image")
args = vars(ap.parse_args())
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
image = cv2.imread(args["image"])
image = imutils.resize(image, width=1080)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 1)
for (i, rect) in enumerate(rects):
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
for (name, (i, j)) in face_utils.FACIAL_LANDMARKS_IDXS.items():
if(name == "left_eye"):
listval = shape[i:j].tolist()
del listval[3]
del listval[0]
(x, y, w, h) = cv2.boundingRect(np.array([listval]))
roi = image[y:y + h, x:x + w]
roi = imutils.resize(roi, width=250, inter=cv2.INTER_CUBIC)
grey = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
imgHSV = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
_, img1 = cv2.threshold(grey, 26 , 255, cv2.THRESH_BINARY)
cv2.imshow("ROI_1", roi)
img1 = cv2.erode(img1, None, iterations=2) #1
img1 = cv2.dilate(img1, None, iterations=4) #2
img1 = cv2.medianBlur(img1, 5) #3
contours, hierarchy = cv2.findContours(img1, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
drawing = np.copy(roi)
cv2.drawContours(drawing, contours, -1, (255, 0, 0), 2)
for contour in contours:
contour = cv2.convexHull(contour)
area = cv2.contourArea(contour)
circumference = cv2.arcLength(contour,True)
circularity = circumference ** 2 / (4*math.pi*area)
print(circularity)
print(area)
if area > 200 or circularity > 1.5:
continue
bounding_box = cv2.boundingRect(contour)
extend = area / (bounding_box[2] * bounding_box[3])
if extend > 0.8:
continue
m = cv2.moments(contour)
if m['m00'] != 0:
center = (int(m['m10'] / m['m00']), int(m['m01'] / m['m00']))
cv2.circle(drawing, center, 3, (0, 255, 0), -1)
try:
ellipse = cv2.fitEllipse(contour)
cv2.ellipse(drawing, box=ellipse, color=(0, 255, 0))
except:
pass
cv2.putText(drawing, str(area),(10,20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (155,255,0))
cv2.imshow("Drawing", drawing)
cv2.waitKey(0)
Glares usually have pixel values around 180. You can check the pixel values with 180 there will be a cluster of pixel with values ranging from 180 to 185 or 190. Change the pixel value of the cluster to the near by clusters pixel value.
I'm working on a project about recognizing moroccan license plates which look like this image :
Moroccan License Plate
Please how can I use OpenCV to cut the license plate out and Tesseract to read the numbers and arabic letter in the middle.
I have looked into this research paper : https://www.researchgate.net/publication/323808469_Moroccan_License_Plate_recognition_using_a_hybrid_method_and_license_plate_features
I have installed OpenCV and Tesseract for python in Windows 10. When I run the tesseract on the text only part of the license plate using "fra" language I get 7714315l Bv. How can I separate the data?
Edit:
The arabic letters we use in Morocco are :
أ ب ت ج ح د هـ
The expected result is : 77143 د 6
The vertical lines are irrelevant, I have to use them to separate the image and read data separately.
Thanks in advance!
You can use HoughTransform since the two vertical lines are irrelevant, to crop the image:
import numpy as np
import cv2
image = cv2.imread("lines.jpg")
grayImage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
dst = cv2.Canny(grayImage, 0, 150)
cv2.imwrite("canny.jpg", dst)
lines = cv2.HoughLinesP(dst, 1, np.pi / 180, 50, None, 60, 20)
lines_x = []
# Get height and width to constrain detected lines
height, width, channels = image.shape
for i in range(0, len(lines)):
l = lines[i][0]
# Check if the lines are vertical or not
angle = np.arctan2(l[3] - l[1], l[2] - l[0]) * 180.0 / np.pi
if (l[2] > width / 4) and (l[0] > width / 4) and (70 < angle < 100):
lines_x.append(l[2])
# To draw the detected lines
#cv2.line(image, (l[0], l[1]), (l[2], l[3]), (0, 0, 255), 3, cv2.LINE_AA)
#cv2.imwrite("lines_found.jpg", image)
# Sorting to get the line with the maximum x-coordinate for proper cropping
lines_x.sort(reverse=True)
crop_image = "cropped_lines"
for i in range(0, len(lines_x)):
if i == 0:
# Cropping to the end
img = image[0:height, lines_x[i]:width]
else:
# Cropping from the start
img = image[0:height, 0:lines_x[i]]
cv2.imwrite(crop_image + str(i) + ".jpg", img)
I am sure you know now how to get the middle part ;)
Hope it helps!
EDIT:
Using some morphological operations, you can also extract the characters individually:
import numpy as np
import cv2
image = cv2.imread("lines.jpg")
grayImage = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
dst = cv2.Canny(grayImage, 50, 100)
dst = cv2.morphologyEx(dst, cv2.MORPH_RECT, np.zeros((5,5), np.uint8),
iterations=1)
cv2.imwrite("canny.jpg", dst)
im2, contours, heirarchy = cv2.findContours(dst, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE)
for i in range(0, len(contours)):
if cv2.contourArea(contours[i]) > 200:
x,y,w,h = cv2.boundingRect(contours[i])
# The w constrain to remove the vertical lines
if w > 10:
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 0, 255), 1)
cv2.imwrite("contour.jpg", image)
Result:
This what I achieved by now...
The detection on second image was made by using the code found here: License plate detection with OpenCV and Python
Full code (which work from the third image an on) is this:
import cv2
import numpy as np
import tesserocr as tr
from PIL import Image
image = cv2.imread("cropped.png")
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imshow('gray', image)
thresh = cv2.adaptiveThreshold(gray, 250, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 255, 1)
cv2.imshow('thresh', thresh)
kernel = np.ones((1, 1), np.uint8)
img_dilation = cv2.dilate(thresh, kernel, iterations=1)
im2, ctrs, hier = cv2.findContours(img_dilation.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
sorted_ctrs = sorted(ctrs, key=lambda ctr: cv2.boundingRect(ctr)[0])
clean_plate = 255 * np.ones_like(img_dilation)
for i, ctr in enumerate(sorted_ctrs):
x, y, w, h = cv2.boundingRect(ctr)
roi = img_dilation[y:y + h, x:x + w]
# these are very specific values made for this image only - it's not a factotum code
if h > 70 and w > 100:
rect = cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
clean_plate[y:y + h, x:x + w] = roi
cv2.imshow('ROI', rect)
cv2.imwrite('roi.png', roi)
img = cv2.imread("roi.png")
blur = cv2.medianBlur(img, 1)
cv2.imshow('4 - blur', blur)
pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
api = tr.PyTessBaseAPI()
try:
api.SetImage(pil_img)
boxes = api.GetComponentImages(tr.RIL.TEXTLINE, True)
text = api.GetUTF8Text()
finally:
api.End()
# clean the string a bit
text = str(text).strip()
plate = ""
# 77143-1916 ---> NNNNN|symbol|N
for char in text:
firstSection = text[:5]
# the arabic symbol is easy because it's nearly impossible for the OCR to misunderstood the last 2 digit
# so we have that the symbol is always the third char from the end (right to left)
symbol = text[-3]
lastChar = text[-1]
plate = firstSection + "[" + symbol + "]" + lastChar
print(plate)
cv2.waitKey(0)
For arabic symbols you should install additional languages from TesseractOCR (and possibly use the version 4 of it).
Output: 77143[9]6
The number between brackets is the arabic symbol (undetected).
Hope I helped you.
The HOUGH lines (RED and WHITE) I get vary from one frame of video to the next even though the scene is static.
There is also lots of variation in the Canny results from frame to frame. This problem is not so bad here with my test case but for a real street scene, the Canny detected edges really go nuts from frame to frame.
As can be seen, many lines also simply get missed.
I realize that the noise is different from frame to frame but the conversion to grayscale and subsequent blur make the input images very close (at least to my eye).
What is going on and is there any way to fix this?
# Python 2/3 compatibility
import sys
PY3 = sys.version_info[0] == 3
if PY3:
xrange = range
import numpy as np
import cv2
import math
from time import sleep
cap = cv2.VideoCapture(0)
if __name__ == '__main__':
SLOPE = 2.0
while(True):
sleep(0.2)
ret, src = cap.read()
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
gray_blur = cv2.medianBlur(gray, 5)
gray_blur_canny = cv2.Canny(gray_blur, 25, 150)
cv2.imshow("src", src)
cv2.imshow("gray_blur", gray_blur)
cv2.imshow("gray_blur_canny", gray_blur_canny)
cimg = src.copy() # numpy function
lines = cv2.HoughLinesP(
gray_blur_canny,
1,
math.pi/180.0,
40,
np.array([]),
50,
10)
if lines is not None:
a,b,c = lines.shape
for i in range(a):
numer = lines[i][0][3] - lines[i][0][1] + 0.001;
denom = lines[i][0][2] - lines[i][0][0];
if (denom == 0):
denom = 0.001;
slope = abs(numer/denom);
print slope
if (slope > SLOPE):
cv2.line(
cimg,
(lines[i][0][0], lines[i][0][1]),
(lines[i][0][2], lines[i][0][3]),
(0, 0, 255),
3,
cv2.LINE_AA)
if (slope < (1.0/SLOPE)):
cv2.line(
cimg,
(lines[i][0][0], lines[i][0][1]),
(lines[i][0][2], lines[i][0][3]),
(200, 200, 200),
3,
cv2.LINE_AA)
cv2.imshow("hough lines", cimg)
ch = cv2.waitKey(1)
if ch == 27:
break
cv2.destroyAllWindows()
I am using the below mentioned code to track brown coloured magnetic beads. The line cv2.circle(frame, center, 5 ,(0,0,255),-1) is giving a Type error. Can anyone provide insight on this?
import cv2
import numpy as np
import matplotlib.pyplot as plt
import imutils
black_lower = (0,0,0) #this two-blacks corresponds to the colour range in hsv, which we are looking in ants
black_upper = (130, 130, 128)
kernel_erode = np.ones((1,1),np.uint8) #these kernels are defined for eroding and dialating image
kernel_dialate = np.ones((3,3),np.uint8)
r,h,c,w = 600, 400, 100, 700 # i have to play with the size of the window for getting the roi (currently cutting defined roi)
track_window = (c,r,w,h)
vid = cv2.VideoCapture('/home/idaho/Desktop/opencv_files/brown_beads.mp4')
while (vid.isOpened()):
ret,frame = vid.read()
frame = imutils.resize(frame) #we have resized the frame, now we have to convert to hsv color space!
hsv_frame = cv2.cvtColor(frame,cv2.COLOR_RGB2HSV) # we have converted the frame in to hsv space!
mask1 = cv2.inRange(hsv_frame,black_lower,black_upper)#now we should define a mask for color ranges from black_lower to black_upper and remove other noices!
mask2 = cv2.erode(mask1,kernel_erode,iterations=1) #for increasing the object detection , we have to reduce the erode_kernel_size and increase the dialate_kernel_size
mask3 = cv2.dilate(mask2,kernel_dialate,iterations=2)
mask4 = cv2.GaussianBlur(mask3,(1,1),0)
x,y,w,h = track_window # these are for defining the roi in the video, will have to play with this!
cv2.rectangle(mask4,(x,y),(x+w,y+h),(255,0,0),2)
dst = np.zeros_like(mask4)
dst[y:y+h,x:x+w] = mask4[y:y+h,x:x+w]
cv2.imshow('gray',frame)
#this is finding the specific object in the video and drawing a contour against it
counts = cv2.findContours(mask4.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]
center = None
if len(counts) > 0:
calculate = max(counts,key = cv2.contourArea)
((x,y),radius) = cv2.minEnclosingCircle(calculate)
M = cv2.moments(calculate)
center = (int(M["m10"]/M["m00"]),(M["m01"]/M["m00"]))
if radius > 1:
cv2.circle(frame, (int(x),int(y)),int(radius),(0,255,255),2)
cv2.circle(frame, center, 5 ,(0,0,255),-1)
pts.appendleft(center)
for i in xrange(1,len(pts)):
if pts[i-1] is None or pts[i] is None:
continue
thickness = int(np.sqrt(64/float(i+1))*2.5)
cv2.line(frame,pts[i-1],pts[i],(0,0,255),thickness)
cv2.imshow('frame',frame)
if cv2.waitKey(50) and 0xFF == ord('q'):
break
vid.release()
cv2.destroyAllWindows()
Type error occurs when the expected type of data is not fed. Any other type other than the expected type leads to this error.
You have to modify your line from:
center = (int(M["m10"]/M["m00"]),(M["m01"]/M["m00"]))
to:
center = (int(M["m10"]/M["m00"]), int(M["m01"]/M["m00"]))
You did not include type int to the second coordinate of the center, hence you have been receiving this error all the while.