How to visit UIApplication object in background thread? - ios

In my dispatched background thread , I need do something like this :
if ([[UIApplication sharedApplication] keyWindow].traitCollection.userInterfaceStyle == dark)
{
// do something
}
else
{
//do something else
}
but the main thread checker will warn about this
"-[UIApplication keyWindow] must be used from main thread only"
And i don't think i can dispatch the visit to main thread can work in my situation , so how to visit traitCollection.userInterfaceStyle in background thread?

I would put a copy of this data where the background thread can access it. I would also monitor the trait collection on the main thread so I could dispatch to the background thread when it changes. That way the background thread can rerun this code at that time.

Related

UIApplication delegate must be used from main thread only - Swift

I am getting "runtime: UI API called from background thread: -[UIApplication delegate] must be used from main thread only
" runtime issue for Fabric initialisation line. Not sure how to solve it. Please help
Thanks
Fabric.with([Crashlytics.self,Zendesk.self])
It's because you are trying to access the UI from background thread. Just call the UI change in main thread.
DispatchQueue.main.async {
application.statusBarStyle = UIStatusBarStyle.lightContent
}
UI process are maintained under main thread.

GCD Main Thread Crash Issue (Explanation Needed)?

why do this piece of code causes crash ?
DispatchQueue.main.sync {
// Operation To Perform
}
why we have to write this way :-
DispatchQueue.global().async(execute: {
print("test")
DispatchQueue.main.sync{
print("main thread")
}
})
and when we write code in CellForRowAt or any other method in which thread it goes main or global on how it works sync or async way ?
According to Apple, attempting to synchronously executing a work item on main queue results into a dead-lock.
So writing DispatchQueue.main.sync {} can lead to deadlock condition as all the UI operations performed by app is performed on main queue unless we manually switch some task on the background queue. This also answer your question regarding on which thread CellForRowAt is called. All the methods related to UI operation or UIkit are called from main thread
Performing a task synchronously means blocking a thread until the task is not completed and in this case you are attempting to block main thread on which the system / app would be already performing some task and that can lead to deadlock. Blocking main thread is not at all recommended and thats why we need to switch asynchronously to a background thread so that main thread is not blocked.
To read more you can visit the following link:
https://developer.apple.com/documentation/dispatch
Why crash In Short
DispatchQueue.main.sync {
// Operation To Perform
}
calling sync and targeting current queue is a deadlock (calling queue waits for the sync block to finish, but it does not start because target queue (same) is busy waiting for the sync call to finish) and thats probably why the crash.
For Second block : You are creating global queue and then you are getting main queue so now there is no dead lock
If you have ever used semaphore which has same issue if you don't take care
it has two methods wait and signal with wait if you block main thread then your code will never executed.
hope it is helpful
DispatchQueue.main.sync {
// Operation To Perform
}
Calling sync on a serial queue (like main) that you're already on will cause a deadlock. The first process can't finish because it's waiting for the second process to finish, which can't finish because it's waiting for the first to finish etc.
DispatchQueue.global().async(execute: {
print("test")
DispatchQueue.main.sync{
print("main thread")
}
})
Calling sync on the main thread from here works as you're moving the task to the global() queue.
There's a great 2 part GCD tutorial on raywenderlich.com which I encourage you to read https://www.raywenderlich.com/148513/grand-central-dispatch-tutorial-swift-3-part-1.

dispatch_async block on main queue is never execeuted

I have an app that uses a connection queue that handles the connections on a background thread. Each connection sends a JSON post, then when it receives a success, saves some objects into coredata.
Once all connections are complete, i call a dispatch_async on the main thread to call a finished method.
However, under very specific conditions of data im sending/saving, I've noticed the dispatch_async block to the main thread never gets called, and the app screen freezes, all execution stops, and the app sits idle with a frozen screen. processing power according to xcode is 0%.
Here is method with the block that fails.
- (void)connectionDidComplete
{
_completeConnections++;
_syncProgress = (float)_completeConnections / (float)_totalConnections;
dispatch_async(mainQueue, ^(void) {
[[NSNotificationCenter defaultCenter] postNotificationName:SyncQueueDidUpdateNotification object:nil];
}); <-- this dispatch works
if (_completeConnections == _totalConnections)
{
// clear unsynced data
NSArray *syncedObjects = [SyncObject completedSyncObjects];
if (syncedObjects.count > 0)
{
for (SyncObject *syncObject in syncedObjects)
{
[syncObject delete];
}
}
//this method saves the current context, then merges this context with the main context right after
[[VS_CoreDataManager sharedManager] saveManagedObjectContextAndWait:managedObjectContext];
// cleanup the thread's context
[[VS_CoreDataManager sharedManager] unRegisterManagedObjectContextForThread:currentThread];
managedObjectContext = nil;
// complete sync
dispatch_async(mainQueue, ^(void) {
[self performSelector:#selector(finishSync) withObject:nil afterDelay:2];
}); <-- this dispatch never gets called
}
}
My suspicion is this problem has something to do with saving the context then merging it. And possibly while that is happening its released in the middle of the merge, causing some weird hang up and the dispatch isn't getting executed. This is just a guess though, and I don't know how to fix it.
Any ideas?
Thanks.
If the block on the main thread is not executed, then it is because of 1 of 2 reasons.
The main thread is blocked; is not processing any events at all. Got a while() loop on the main thread? That'd do it. A lock? There you go.
The main thread is running a modal run loop inside the outer run loop. Asynchronous dispatches to the main event loop -- main thread -- won't be processed in this case.
Set a breakpoint on that dispatch_async() and see what the main thread is doing (at the point of dispatch the main thread is most likely already in the bad state).
DarkDust's suggestion of using dispatch_after() is a good one, but is unlikely to work in that it is almost assuredly the case that your main thread is not processing events when the problem occurs. I.e. fix the problem, then move to dispatch_after() as DarkDust suggests.
If your main thread is busy with modal runloop, then you could try
CFRunLoopPerformBlock(CFRunLoopGetMain(), kCFRunLoopCommonModes, block
});
I believe this is a great discussion. I came across this when I had the following code:
dispatch_synch(dispatch_get_main_queue()){
print("I am here")
}
the print code did not execute as I was dispatching a 'synch' block on the serial main thread which caused a dead lock. print was waiting for the dispatch to finish and dispatch was waiting for print to finish. When you dispatch in the main serial queue then you should use dispatch_async. and i guess if you use a concurrent queue then dispatch synch suits better

dispatch_async on main_queue?

I have seen this code snippet:
dispatch_async(dispatch_get_main_queue(), ^{
[self doSomeNetworkStuff];
});
This doesn't look like making much sense to me.
EDIT: To clarify the conditions of my question:
The call to dispatch_async is performed from the main thread.
The sent message doSomeNetworkStuff is the heavy lifting worker task.
... and is not only the UI-updating task.
Dispatch, sure, but using the main queue would just pull the dispatched task back to the ui thread and block it.
Please, am I missing something?
Thanks.
dispatch_async lets your app run tasks on many queues, so you can increase performance.
But everything that interacts with the UI must be run on the main thread.
You can run other tasks that don't relate to the UI outside the main thread to increase performance.
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
//Add some method process in global queue - normal for data processing
dispatch_async(dispatch_get_main_queue(), ^(){
//Add method, task you want perform on mainQueue
//Control UIView, IBOutlet all here
});
//Add some method process in global queue - normal for data processing
});
Swift 3:
DispatchQueue.global(attributes: .qosBackground).async {
print("This is run on the background queue")
DispatchQueue.main.async {
print("This is run on the main queue, after the previous code in outer block")
}
}
when you want to do some Webservicecall or something you dispatch a async call like this below:
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,0),^{
//Call your webservice here , your app will not freeze at all
});
Now, suppose you want to update or push a ViewController from your dispatched thread, if you directly push viewcontroller from this, app will or may get crashed,as such UI updates should be done in main thread of app,below is the answer for this then.
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT,0),^{
//Call your webservice here , your app will not freeze at all
//To update UIFrom dispatched Thread:
dispatch_async(dispatch_get_main_queue,^{
//Push view controller here
});
});
for detail visit : blackberrymastercracks.blogspot.in
It depends from where this code is being called. Means if its calling from main queue then it doesn't make sense. (Note: it will not cause a crash but it will just add a task in main queue ).
If this code is written in background thread then this is a converging point for the application. Like you are getting data from web service in background thread then wants to update it on UI then you can call it.
-(void) backgroundThreadFunction {
//Some stuff on background thread.
dispatch_async(dispatch_get_main_queue(), ^{
//Wants to update UI or perform any task on main thread.
[self doSomeNetworkStuff];
});
}
You can find more details over apple documentation https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
or from this answer also https://stackoverflow.com/a/19822753/505735
Do post me if its still unclear. I will write a detailed answer.
You'll usually see that syntax inside of another dispatch_async call that runs on a background thread. This is because all updates to the UI should happen on the main thread, not in the background.
I lost track of this question, but as it still gets traction, I'll post an answer to this (using swift)
Assumptions: I do know that UI work has to be done on the main thread.
//
// We are on the main thread here.
// The following will schedule the closure on the main thread after ALL other
// routines currently scheduled on the main thread are done.
//
DispatchQueue.main.async {
//
// So here we are back on the main thread AFTER all routines on the main
// thread have completed.
//
// If the following call does NOT dispatch onto a background thread
// it will block the UI and it was really bad programming.
//
// Thus, for now and for the benefit of the doubt, let's assume
// `doSomeNetworkStuff()` DOES dispatch to a background thread.
//
// This can only make sense if the the func `doSomeNetworkStuff()`
// relies on results of code paths following this current
// `DispatchQueue.main.async(... we are here ...)`.
//
// If `doSomeNetworkStuff()` does NOT depend on any other code paths:
// Why not directly scheduling it directly on a background thread?
// Which is unnecessary, as as stated above it MUST dispatch on to the
// background anyways.
//
// Moreover, there is few possibility that `doSomeNetworkStuff()` does
// depend on other codepaths, because `self` is already captured by
// the closure.
//
self.doSomeNetworkStuff()
}
Taking all this together IMHO the original code does not make very much sense. It could be replaced with:
// We are on the main thread here
self.doSomeNetworkStuff()
The original async dispatch onto the main thread to then dispatch to background should be wasteful and confusing (obviously).
Unfortunately I am not in the position anymore to try this out with the original code base.
Am I missing an idea here?

iOS: Is [UIApplication schedulelocalnotification] and related local notification manipulating methods thread safe?

My App sometimes need to schedule almost 64 local notifications, which will block my main thread for almost 1 seconde on iPhone4.
I want to do this on a separated thread, is these local notification manipulating methods of UIApplcation thread safe?
dont think so as the docs dont explicitly state it and UIKit in general in large parts isnt thread safe
but it would be worth a try :D the main thread is only a dispatch_async away ;)
--- maybe it would be an option to schedule them individually and run the main loop in between
There are two things in play, thread safety and calling UIKit from background threads. Some UIKit code doesn’t like to be called from a background thread at all and will throw an exception if you attempt to do so (like setting a new content for a UITextView). In other words, there’s something like this in the code:
NSParameterAssert([NSThread isMainThread],
#"This method must be called from the main thread.");
Then comes the thread safety, ie. if the code can be called from a background thread, it might still be written in a way that may result in a bug when you do so:
- (void) doA {
for (id item in allItemsArray) {
// do something
}
}
- (void) doB {
[allItemsArray addObject:#"foo"];
}
Now if one thread calls -doA and another thread calls -doB in the meantime, your app would crash with an exception because you changed the allItemsArray while enumerating it.
So the first question is if the notification methods can be called on a background thread. I’d say they can. In that case you can simply schedule all your notification from a background queue:
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
for (int i=0; i<64; i++) {
// schedule notification
}
});
You don’t need to care about thread safety, unless there’s another part of your app scheduling other local notifications in the meantime. If there is, you can either create a separate queue to serialize all the notification calling code, or you have to be sure that the methods are thread-safe indeed (in which case I have no authoritative resource to offer).

Resources