I am currently implementing derivatives of regular data structures, in Agda,
as presented in the One-Hole Context paper by Conor McBride [5].
In implementing it straight out of the OHC paper, which has also been done by Löh & Magalhães [3,4], we are left with the ⟦_⟧ function highlighted in red,
as Agda can't tell if the μ and I cases will terminate together.
Löh & Magalhães made a comment of this in their repository.
Other papers have also included a similar implementation or definitions in their papers [7,8] but do not
have a repo (at least I haven't been able to find it) [1,2,6],
or they follow a different approach [9] in which μ is defined separately
from Reg, ⟦_⟧, and derive (or dissection in their case), with no environment, and the operations are performed on a stack.
Using the {-# TERMINATING #-} or {-# NON_TERMINATING #-} flags
is undesirable. Particularly, anything using ⟦_⟧ will not normalize,
and thus I can't use this function to prove anything.
The implementation below is a slight modification to the OHC implementation.
It removes weakening and substitution as part of the structural definition of Reg.
Which, at first, makes ⟦_⟧ happy! But I find a similar problem when implementing
derive -- Agda's termination checker is not happy with the μ case.
I haven't been successful at convincing Agda that derive terminates.
I was wondering if anyone had successfully implemented derive with the
signature derive : {n : ℕ} → (i : Fin n) → Reg n → Reg n
The code below only shows some of the important pieces.
I have included a gist with the rest of the definitions, which includes definitions
of substitution and weakening and the derive that fails to terminate.
-- Regular universe, multivariate.
-- n defines the number of variables
data Reg : ℕ → Set₁ where
0′ : {n : ℕ} → Reg n
1′ : {n : ℕ} → Reg n
I : {n : ℕ} → Fin n → Reg n
_⨁_ : {n : ℕ} → (l r : Reg n) → Reg n
_⨂_ : {n : ℕ} → (l r : Reg n) → Reg n
μ′ : {n : ℕ} → Reg (suc n) → Reg n
infixl 30 _⨁_
infixl 40 _⨂_
data Env : ℕ → Set₁ where
[] : Env 0
_,_ : {n : ℕ} → Reg n → Env n → Env (suc n)
mutual
⟦_⟧ : {n : ℕ} → Reg n → Env n → Set
⟦ 0′ ⟧ _ = ⊥
⟦ 1′ ⟧ _ = ⊤
⟦ I zero ⟧ (X , Xs) = ⟦ X ⟧ Xs
⟦ I (suc n) ⟧ (X , Xs) = ⟦ I n ⟧ Xs
⟦ L ⨁ R ⟧ Xs = ⟦ L ⟧ Xs ⊎ ⟦ R ⟧ Xs
⟦ L ⨂ R ⟧ Xs = ⟦ L ⟧ Xs × ⟦ R ⟧ Xs
⟦ μ′ F ⟧ Xs = μ F Xs
data μ {n : ℕ} (F : Reg (suc n)) (Xs : Env n) : Set where
⟨_⟩ : ⟦ F ⟧ (μ′ F , Xs) → μ F Xs
infixl 50 _[_]
infixl 50 ^_
_[_] : {n : ℕ} → Reg (suc n) → Reg n → Reg n
^_ : {n : ℕ} → Reg n → Reg (suc n)
derive : {n : ℕ} → (i : Fin n) → Reg n → Reg n
derive = {!!}
Complete code:
https://pastebin.com/awr9Bc0R
[1] Abbott, M., Altenkirch, T., Ghani, N., and McBride, C. (2003). Derivatives of con- tainers. In International Conference on Typed Lambda Calculi and Applications, pages 16–30. Springer.
[2] Abbott, M., Altenkirch, T., McBride, C., and Ghani, N. (2005). δ for data: Differ- entiating data structures. Fundamenta Informaticae, 65(1-2):1–28.
[3] Löh, A. & Magalhães JP (2011). Generic Programming with Indexed Functors. In Proceedings of the seventh ACM SIGPLAN Workshop on Generic Programming (WGP'11).
[4] Magalhães JP. & Löh, A. (2012) A Formal Comparison of Approaches to Datatype-Generic Programming. In Proceedings Fourth Workshop on Mathematically Structured Functional Programming (MSFP '12).
[5] McBride, C. (2001). The derivative of a regular type is its type of one-hole contexts. Unpublished manuscript, pages 74–88.
[6] McBride, C. (2008). Clowns to the left of me, jokers to the right (pearl): dissecting data structures. In ACM SIGPLAN Notices, volume 43, pages 287–295. ACM.
[7] Morris, P., Altenkirch, T., & McBride, C. (2004, December). Exploring the regular tree types. In International Workshop on Types for Proofs and Programs (pp. 252-267). Springer, Berlin, Heidelberg.
[8] Sefl, V. (2019). Performance analysis of zippers. arXiv preprint arXiv:1908.10926.
[9] Tome Cortinas, C. and Swierstra, W. (2018). From algebra to abstract machine: a verified generic construction. In Proceedings of the 3rd ACM SIGPLAN Interna- tional Workshop on Type-Driven Development, pages 78–90. ACM.
The definition of derive terminates, you just adapted the code from the repo incorrectly. If derive is only called on F in the μ′ F case, that's clearly structural. In the code sample you tried to recurse on ^ (F [ μ′ F ]) instead.
derive : {n : ℕ} → (i : Fin n) → Reg n → Reg n
derive i 0′ = 0′
derive i 1′ = 0′
derive i (I j) with i ≟ j
derive i (I j) | yes refl = 1′
... | no _ = 0′
derive i (L ⨁ R) = derive i L ⨁ derive i R
derive i (L ⨂ R) = (derive i L ⨂ R) ⨁ (L ⨂ derive i R)
derive i (μ′ F) = μ′ ( (^ (derive (suc i) F [ μ′ F ]))
⨁ (^ (derive zero F [ μ′ F ])) ⨂ I zero)
I also suggest to adjust Reg as follows, since n as index is unnecessary, and Set₁ as well.
data Reg (n : ℕ) : Set where
0′ : Reg n
1′ : Reg n
I : Fin n → Reg n
_⨁_ : (l r : Reg n) → Reg n
_⨂_ : (l r : Reg n) → Reg n
μ′ : Reg (suc n) → Reg n
Related
I'm learning Agda using Philip Wadler's Programming Language Foundations In Agda, and I can't figure out how to convince the compiler that a computation terminates.
I've got types for unary and binary naturals:
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
data Bin : Set where
⟨⟩ : Bin
_O : Bin → Bin
_I : Bin → Bin
And I wrote a function to convert between the two representations (using some helpers):
-- try to count to a given power of two
--
-- to-count m t f n =
-- t (n - 2^m) if n >= 2^m
-- (f * 2^m) + n otherwise
to-count : ℕ → (ℕ → Bin) → Bin → ℕ → Bin
to-count zero t f zero = f
to-count zero t f (suc n) = t n
to-count (suc m) t f n = to-count m (to-count m t (f I)) (f O) n
-- keep trying to count bigger and bigger powers of two
to-next : ℕ → ℕ → Bin
to-next m = to-count m (to-next (suc m)) (⟨⟩ I)
to : ℕ → Bin
to = to-count zero (to-next zero) ⟨⟩
Later, when trying to prove that my conversion is faithful:
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
_ : to zero ≡ ⟨⟩
_ = refl
_ : to (suc zero) ≡ ⟨⟩ I
_ = refl
The compiler complains that termination checking failed:
Checking Naturals (Naturals.agda).
Naturals.agda:23,1-24,48
Termination checking failed for the following functions:
to-next
Problematic calls:
to-next (suc m)
(at Naturals.agda:24,25-32)
Naturals.agda:37,5-9
to-next zero zero != ⟨⟩ I of type Bin
when checking that the expression refl has type
to (suc zero) ≡ (⟨⟩ I)
What are some strategies I can use to help convince the compiler that it terminates?
Using pragma is not how you need to convince the compiler that the function terminates.
The compiler indicated the problematic call: to-next (suc m) cannot be seen as unused in the cases you think, and obviously it creates a structurally bigger value than on input.
A way to deal with this problem is express the construction of Bin from ℕ differently.
inc-bin : Bin -> Bin
inc-bin ⟨⟩ = ⟨⟩ I
inc-bin (bb O) = bb I
inc-bin (bb I) = (inc-bin bb) O
to-bin-daft : ℕ -> Bin
to-bin-daft zero = b O
to-bin-daft (suc m) = inc-bin (to-bin-daft m)
This is "daft", as it literally increments Bin by one at a time, for every suc, but more complex algorithms involving, say, division by 2, require evidence that the result of division is smaller than the input.
Not sure if this is the most idiomatic solution, but I got it working using the TERMINATING pragma:
{-# TERMINATING #-}
to-next : ℕ → ℕ → Bin
to-next m = to-count m (to-next (suc m)) (⟨⟩ I)
I am a noob in agda and reading http://www.cse.chalmers.se/~ulfn/papers/afp08/tutorial.pdf. My shallow knowledge somehow finds dot pattern not quite necessary. For example,
data Image_∋_ {A B : Set}(f : A → B) : B → Set where
im : (x : A) → Image f ∋ f x
inv : {A B : Set}(f : A → B)(y : B) → Image f ∋ y → A
inv f .(f x) (im x) = x
I find inv can well be defined as
inv : {A B : Set}(f : A → B)(y : B) → Image f ∋ y → A
inv _ _ (im x) = x
because from the types, we've already known y is an image of f for some x, so it cannot possibly go wrong.
Another example is
data _==_ {A : Set}(x : A) : A → Set where
refl : x == x
data _≠_ : ℕ → ℕ → Set where
z≠s : {n : ℕ} → zero ≠ suc n
s≠z : {n : ℕ} → suc n ≠ zero
s≠s : {n m : ℕ} → n ≠ m → suc n ≠ suc m
data Equal? (n m : ℕ) : Set where
eq : n == m → Equal? n m
neq : n ≠ m → Equal? n m
equal? : (n m : ℕ) → Equal? n m
equal? zero zero = eq refl
equal? zero (suc _) = neq z≠s
equal? (suc _) zero = neq s≠z
equal? (suc n') (suc m') with equal? n' m'
... | eq refl = eq refl
... | neq n'≠m' = neq (s≠s n'≠m')
consider equal? function, the second last line is written in the paper as (suc n') (suc .n') | eq refl = eq refl. Again, eq refl in with construct has provided a proof, for these two values being the same, so why do I bother writing them out using dot pattern?
I am more familiar with coq, and I am not aware of similar thing in coq. Am I missing something here?
In Coq you write the pattern-matches explicitly whereas Agda's equation-based approaches forces the typechecker to reconstruct a case-tree which ought to correspond to what you wrote.
Dotted-patterns help the typechecker see that a given pattern was not the product of a match but rather forced by a match on one of the other arguments (e.g.: a match on a Vec Bool n will force the value of n, or a match on an equality proof will, as you've observed, force some variables to be the same).
They're not always necessary and, in fact, some have been slowly made optional as you can see in the CHANGELOG for version 2.5.3:
Dot patterns.
The dot in front of an inaccessible pattern can now be skipped if the pattern consists entirely of constructors or literals. For example:
Recently I made a type for finite sets in Agda with the following implementation:
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Data.Empty
open import Data.Unit
open import Relation.Binary.PropositionalEquality
open import Data.Nat
suc-inj : (n m : ℕ) → (suc n) ≡ (suc m) → n ≡ m
suc-inj n .n refl = refl
record Eq (A : Set) : Set₁ where
constructor mkEqInst
field
_decide≡_ : (a b : A) → Dec (a ≡ b)
open Eq {{...}}
mutual
data FinSet (A : Set) {{_ : Eq A }} : Set where
ε : FinSet A
_&_ : (a : A) → (X : FinSet A) → .{ p : ¬ (a ∈ X)} → FinSet A
_∈_ : {A : Set} → {{p : Eq A}} → (a : A) → FinSet A → Set
a ∈ ε = ⊥
a ∈ (b & B) with (a decide≡ b)
... | yes _ = ⊤
... | no _ = a ∈ B
_∉_ : {A : Set} → {{p : Eq A}} → (a : A) → FinSet A → Set
_∉_ a X = ¬ (a ∈ X)
decide∈ : {A : Set} → {{_ : Eq A}} → (a : A) → (X : FinSet A) → Dec (a ∈ X)
decide∈ a ε = no (λ z → z)
decide∈ a (b & X) with (a decide≡ b)
decide∈ a (b & X) | yes _ = yes tt
... | no _ = decide∈ a X
decide∉ : {A : Set} → {{_ : Eq A}} → (a : A) → (X : FinSet A) → Dec (a ∉ X)
decide∉ a X = ¬? (decide∈ a X)
instance
eqℕ : Eq ℕ
eqℕ = mkEqInst decide
where decide : (a b : ℕ) → Dec (a ≡ b)
decide zero zero = yes refl
decide zero (suc b) = no (λ ())
decide (suc a) zero = no (λ ())
decide (suc a) (suc b) with (decide a b)
... | yes p = yes (cong suc p)
... | no p = no (λ x → p ((suc-inj a b) x))
However, when I test this type out with the following:
test : FinSet ℕ
test = _&_ zero ε
Agda for some reason can't infer the implicit argument of type ¬ ⊥! However, auto of course finds the proof of this trivial proposition: λ x → x : ¬ ⊥.
My question is this: Since I've marked the implicit proof as irrelevant, why can't Agda simply run auto to find the proof of ¬ ⊥ during type checking? Presumably, whenever filling in other implicit arguments, it might matter exactly what proof Agda finda, so it shouldn't just run auto, but if the proof has been marked irrelevant, like it my case, why can't Agda find a proof?
Note: I have a better implementation of this, where I implement ∉ directly, and Agda can find the relevant proof, but I want to understand in general why Agda can't automatically find these sorts of proofs for implicit arguments. Is there any way in the current implementation of Agda to get these "auto implicits" like I want here? Or is there some theoretical reason why this would be a bad idea?
There's no fundamental reason why irrelevant arguments couldn't be solved by proof search, however the fear is that in many cases it would be slow and/or not find a solution.
A more user-directed thing would be to allow the user to specify that a certain argument should be inferred using a specific tactic, but that has not been implemented either. In your case you would provide a tactic that tries to solve the goal with (\ x -> x).
If you give a more direct definition of ∉, then the implicit argument gets type ⊤ instead of ¬ ⊥. Agda can fill in arguments of type ⊤ automatically by eta-expansion, so your code just works:
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Data.Empty
open import Data.Unit
open import Relation.Binary.PropositionalEquality
open import Data.Nat
suc-inj : (n m : ℕ) → (suc n) ≡ (suc m) → n ≡ m
suc-inj n .n refl = refl
record Eq (A : Set) : Set₁ where
constructor mkEqInst
field
_decide≡_ : (a b : A) → Dec (a ≡ b)
open Eq {{...}}
mutual
data FinSet (A : Set) {{_ : Eq A}} : Set where
ε : FinSet A
_&_ : (a : A) → (X : FinSet A) → .{p : (a ∉ X)} → FinSet A
_∉_ : {A : Set} → {{p : Eq A}} → (a : A) → FinSet A → Set
a ∉ ε = ⊤
a ∉ (b & X) with (a decide≡ b)
... | yes _ = ⊥
... | no _ = a ∉ X
decide∉ : {A : Set} → {{_ : Eq A}} → (a : A) → (X : FinSet A) → Dec (a ∉ X)
decide∉ a ε = yes tt
decide∉ a (b & X) with (a decide≡ b)
... | yes _ = no (λ z → z)
... | no _ = decide∉ a X
instance
eqℕ : Eq ℕ
eqℕ = mkEqInst decide
where decide : (a b : ℕ) → Dec (a ≡ b)
decide zero zero = yes refl
decide zero (suc b) = no (λ ())
decide (suc a) zero = no (λ ())
decide (suc a) (suc b) with (decide a b)
... | yes p = yes (cong suc p)
... | no p = no (λ x → p ((suc-inj a b) x))
test : FinSet ℕ
test = _&_ zero ε
I am trying to figure out how to use Agda's standard library implementation of finite sets based on AVL trees in the Data.AVL.Sets module. I was able to do so successfully using ℕ as the values with the following code.
import Data.AVL.Sets
open import Data.Nat.Properties as ℕ
open import Relation.Binary using (module StrictTotalOrder)
open Data.AVL.Sets (StrictTotalOrder.isStrictTotalOrder ℕ.strictTotalOrder)
test = singleton 5
Now I want to achieve the same thing but with Data.String as the values. There doesn't seem to be a corresponding Data.String.Properties module, but Data.String exports strictTotalOrder : StrictTotalOrder _ _ _ which I thought looked appropriate.
However, just strictly replacing the modules according to this assumption fails.
import Data.AVL.Sets
open import Data.String as String
open import Relation.Binary using (module StrictTotalOrder)
open Data.AVL.Sets (StrictTotalOrder.isStrictTotalOrder String.strictTotalOrder)
Produces the error
.Relation.Binary.List.Pointwise.Rel
(StrictTotalOrder._≈_ .Data.Char.strictTotalOrder) (toList x) (toList x₁)
!= x .Relation.Binary.Core.Dummy.≡ x₁ of type Set
when checking that the expression
StrictTotalOrder.isStrictTotalOrder String.strictTotalOrder
has type
Relation.Binary.IsStrictTotalOrder .Relation.Binary.Core.Dummy._≡_
__<__3
which I find difficult to unpack in detail since I have no idea what the Core.Dummy stuff is. It seems that there is some problem with the pointwise definition of the total order for Strings, but I can't figure it out.
If you look at Data.AVL.Sets, you can see that it is parameterised by a strict total order associated to the equivalence relation _≡_ (defined in Relation.Binary.PropositionalEquality):
module Data.AVL.Sets
{k ℓ} {Key : Set k} {_<_ : Rel Key ℓ}
(isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_)
where
Now we can have a look at how the strict total order on Strings is defined. We first convert the Strings to List Chars and then compare them based on the strict lexicographic ordering for lists:
strictTotalOrder =
On.strictTotalOrder
(StrictLex.<-strictTotalOrder Char.strictTotalOrder)
toList
If we dig into the code for StrictLex.<-strictTotalOrder, we can see that the equivalence relation associated to our List of Chars is built using the pointwise lifting Pointwise.isEquivalence of whatever the equivalence relation for Chars is.
But Pointwise.isEquivalence is defined in term of this datatype:
data Rel {a b ℓ} {A : Set a} {B : Set b}
(_∼_ : REL A B ℓ) : List A → List B → Set (a ⊔ b ⊔ ℓ) where
[] : Rel _∼_ [] []
_∷_ : ∀ {x xs y ys} (x∼y : x ∼ y) (xs∼ys : Rel _∼_ xs ys) →
Rel _∼_ (x ∷ xs) (y ∷ ys)
So when Agda expects a strict total order associated to _≡_, we instead provided it with a strict total order associated to Rel _ on toList which has no chance of unifying.
How do we move on from here? Well, you could define your own strict total order on strings. Alternatively, you can try to turn the current one into one where _≡_ is the equivalence used. This is what I am going to do in the rest of this post.
So, I want to reuse an IsStrictTotalOrder R O with a different equivalence relation R′. The trick is to notice that if can transport values from R a b to R′ a b then, I should be fine! So I introduce a notion of RawIso A B which states that we can always transport values from A to B and vice-versa:
record RawIso {ℓ : Level} (A B : Set ℓ) : Set ℓ where
field
push : A → B
pull : B → A
open RawIso public
Then we can prove that RawIsos preserve a lot of properties:
RawIso-IsEquivalence :
{ℓ ℓ′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} →
(iso : {a b : A} → RawIso (R a b) (R′ a b)) →
IsEquivalence R → IsEquivalence R′
RawIso-IsEquivalence = ...
RawIso-Trichotomous :
{ℓ ℓ′ ℓ′′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} {O : Rel A ℓ′′} →
(iso : {a b : A} → RawIso (R a b) (R′ a b)) →
Trichotomous R O → Trichotomous R′ O
RawIso-Trichotomous = ...
RawIso-Respects₂ :
{ℓ ℓ′ ℓ′′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} {O : Rel A ℓ′′} →
(iso : {a b : A} → RawIso (R a b) (R′ a b)) →
O Respects₂ R → O Respects₂ R′
RawIso-Respects₂ = ...
All these lemmas can be combined to prove that given a strict total order, we can build a new one via a RawIso:
RawIso-IsStrictTotalOrder :
{ℓ ℓ′ ℓ′′ : Level} {A : Set ℓ} {R R′ : Rel A ℓ′} {O : Rel A ℓ′′} →
(iso : {a b : A} → RawIso (R a b) (R′ a b)) →
IsStrictTotalOrder R O → IsStrictTotalOrder R′ O
RawIso-IsStrictTotalOrder = ...
Now that we know we can transport strict total orders along these RawIsos, we simply need to prove that the equivalence relation used by the strict total order defined in Data.String is in RawIso with propositional equality. It's (almost) simply a matter of unfolding the definitions. The only problem is that equality on characters is defined by first converting them to natural numbers and then using propositional equality. But the toNat function used has no stated property (compare e.g. to toList and fromList which are stated to be inverses)! I threw in this hack and I think it should be fine but if someone has a better solution, I'd love to know it!
toNat-injective : {c d : Char} → toNat c ≡ toNat d → c ≡ d
toNat-injective {c} pr with toNat c
toNat-injective refl | ._ = trustMe -- probably unsafe
where open import Relation.Binary.PropositionalEquality.TrustMe
Anyway, now that you have this you can unfold the definitions and prove:
rawIso : {a b : String} →
RawIso ((Ptwise.Rel (_≡_ on toNat) on toList) a b) (a ≡ b)
rawIso {a} {b} = record { push = `push ; pull = `pull } where
`push : {a b : String} → (Ptwise.Rel (_≡_ on toNat) on toList) a b → a ≡ b
`push {a} {b} pr =
begin
a ≡⟨ sym (fromList∘toList a) ⟩
fromList (toList a) ≡⟨ cong fromList (aux pr) ⟩
fromList (toList b) ≡⟨ fromList∘toList b ⟩
b
∎ where
aux : {xs ys : List Char} → Ptwise.Rel (_≡_ on toNat) xs ys → xs ≡ ys
aux = Ptwise.rec (λ {xs} {ys} _ → xs ≡ ys)
(cong₂ _∷_ ∘ toNat-injective) refl
`pull : {a b : String} → a ≡ b → (Ptwise.Rel (_≡_ on toNat) on toList) a b
`pull refl = Ptwise.refl refl
Which allows you to
stringSTO : IsStrictTotalOrder _ _
stringSTO = StrictTotalOrder.isStrictTotalOrder String.strictTotalOrder
open Data.AVL.Sets (RawIso-IsStrictTotalOrder rawIso stringSTO)
Phew!
I have uploaded a raw gist so that you can easily access the code, see the imports, etc.
I have a definition with the following type:
insert : ∀ {n} → (i : Fin (suc n)) → ∀ t → Env n → Env (suc n)
weaken : ∀ {t t₀ n} {Γ : Env n} → (i : Fin (suc n)) → (e : Γ ⊢ t₀) → (insert i t Γ) ⊢ t₀
Given two environments Γ : Env n and Γ′ : Env n′, and a pointer to a position in the second one, i : Fin (suc n), I would like to weaken an e : (Γ′ ++ Γ) ⊢ t₀.
In theory, this should be easy by using something like
let i′ = raise n′ i
weaken {t} i′ e : insert i′ t (Γ′ ++ Γ) ⊢ t₀
However, in practice it doesn't work out so nicely, because the typechecker is not convinced that raise n′ i has type Fin (suc _) (required by weaken):
(n′ + suc n) != (suc (_n_550 i e)) of type ℕ
when checking that the
expression i′ has type Fin (suc (_n_550 i e))
My problem is, I could use something like +-suc : ∀ n′ n → n′ + suc n ≡ suc (n′ + n) to substitute the type of i′, but then the resulting type from weaken i′ e will not have the form insert i′ t (Γ′ ++ Γ) ⊢ t₀.
Given two environments Γ : Env n and Γ′ : Env n′
Those are contexts.
It should be possible to change the type of insert to
data Bound : ℕ -> Set where
zero : ∀ {n} -> Bound n
suc : ∀ {n} -> Bound n -> Bound (suc n)
insert : ∀ {n} → (i : Bound n) → ∀ t → Env n → Env (suc n)
without changing the body of the function.
You can write a version of raise that raises under suc:
raise′ : ∀ {m} n → Fin (suc m) → Fin (suc (n + m))
raise′ zero i = i
raise′ (suc n) i = suc (raise′ n i)
But the actual solution is to rename terms using either functions:
Ren : Con -> Con -> Set
Ren Γ Δ = ∀ {σ} -> σ ∈ Γ -> σ ∈ Δ
keepʳ : ∀ {Γ Δ σ} -> Ren Γ Δ -> Ren (Γ ▻ σ) (Δ ▻ σ)
keepʳ r vz = vz
keepʳ r (vs v) = vs (r v)
ren : ∀ {Γ Δ σ} -> Ren Γ Δ -> Γ ⊢ σ -> Δ ⊢ σ
ren r (var v) = var (r v)
ren r (ƛ b ) = ƛ (ren (keepʳ r) b)
ren r (f · x) = ren r f · ren r x
or order preserving embeddings.