In Swift, outwards pingpong sequence? - ios

Say you have
for i in 0 ... 10 {
print(i)
}
of course it will print 0,1,2,3,4,5,6,7,8,9,10
for i in 0 ..< 5 {
that's 0,1,2,3,4.
I want to start at a certain integer and pingpong outwards over the count of numbers
So,
for i in function or something (10, 3)
that's 3 4 2 5 1 6 0 7 8 9
for i in function or something (10, 8) {
would be 8 9 7 6 5 4 3 2 1 0
for i in function or something (10, 2) {
would be 2 3 1 4 0 5 6 7 8 9
So it's just an outwards pingpong.
What should I type where I have written function or something (10, 2)?
There might be some really cool syntax possible, along the lines 0 # 7 # 10.
What about something like (0..<10).outPong(3)?
How to formulate such a sequence?
Here's a naive example of how you'd do an outwards pingpong, at the call level.
Call exampleLoad for each of the items in RA, outwards pingpoing:
func loadItemsPongwise(startWith: Int) {
// RA = ... this is your array of some type
exampleLoad(startWith)
let k = RA.count
var howManyDone: Int = 0
var distance: Int = 1
while howManyDone < ( k - 1 ) {
let tryRight = alreadyLoaded + distance
if tryRight < k {
howManyDone = howManyDone + 1
exampleLoad(RA[tryRight])
}
let tryLeft = alreadyLoaded - distance
if tryLeft >= 0 {
howManyDone = howManyDone + 1
exampleLoad(RA[tryLeft])
}
distance = distance + 1
}
}
Of course, something like this wouild be much nicer:
func loadItemsPongwise(startWith: Int) {
for i in ???? {
exampleLoad(i)
}
}

public extension ClosedRange where Bound: AdditiveArithmetic {
func ๐Ÿ“(
by contiguousAdvancement: Bound,
startingAt start: Bound
) -> AnySequence<Bound> {
guard contains(start)
else { return .init( EmptyCollection() ) }
var advancement = contiguousAdvancement
typealias Operate = (Bound, Bound) -> Bound
var pingPong: Operate = (+)
var contiguouslyAdvance: Operate = (-)
return .init(
sequence(first: start) { previous in
pingPongIterate: do {
defer { advancement += contiguousAdvancement }
let pingPonged = pingPong(previous, advancement)
guard self.contains(pingPonged)
else { break pingPongIterate }
(pingPong, contiguouslyAdvance) = (contiguouslyAdvance, pingPong)
return pingPonged
}
let contiguouslyAdvanced = contiguouslyAdvance(previous, contiguousAdvancement)
return self.contains(contiguouslyAdvanced)
? contiguouslyAdvanced
: nil
}
)
}
}
public extension ClosedRange where Bound: AdditiveArithmetic & ExpressibleByIntegerLiteral {
func ๐Ÿ“(startingAt start: Bound) -> AnySequence<Bound> {
๐Ÿ“(by: 1, startingAt: start)
}
}
public extension ClosedRange where Bound: BinaryInteger {
func ๐Ÿ“(by contiguousAdvancement: Bound = 1) -> AnySequence<Bound> {
๐Ÿ“(by: contiguousAdvancement, startingAt: (upperBound + lowerBound) / 2)
}
}
public extension ClosedRange where Bound: FloatingPoint {
func ๐Ÿ“(by contiguousAdvancement: Bound = 1) -> AnySequence<Bound> {
๐Ÿ“(by: contiguousAdvancement, startingAt: (upperBound + lowerBound) / 2)
}
}
XCTAssertEqual(
Array( (2...10).๐Ÿ“() ),
[6, 7, 5, 8, 4, 9, 3, 10, 2]
)
XCTAssertEqual(
Array( (2...10).๐Ÿ“(startingAt: 7) ),
[7, 8, 6, 9, 5, 10, 4, 3, 2]
)
XCTAssertEqual(
Array( (-1.5...7.5).๐Ÿ“(by: 1.5) ),
[3, 4.5, 1.5, 6, 0, 7.5, -1.5]
)
XCTAssertEqual(
Array( (0...6).๐Ÿ“(by: -1) ),
[3, 2, 4, 1, 5, 0, 6]
)
XCTAssertEqual(
Array( (0...3).๐Ÿ“(startingAt: 4) ),
[]
)

So I went the route of taking the analogy of ping-pong seriously. I left some comments for clarity.
It simulates an actual ping pong ball bouncing (starting from the net, oddly), back and forth on a ping pong table that has a net that might not be centered. If it's about to go off the edge on one side, then it just goes to the other side and I like to imagine it does smaller and smaller bounces until it rolls off the table.
Here's the code with comments and a test:
// It's supposed to be a ping pong table ๐Ÿคทโ€โ™‚๏ธ
struct ๐ŸŸฆ: IteratorProtocol, Sequence {
typealias Element = Int
// The table *is* the iterator
typealias Iterator = ๐ŸŸฆ
let leftEdgePosition: Int
/// The starting point for the ball
let netPosition: Int
let rightEdgePosition: Int
/// For convenience in checking whether different ball positions are on the table.
private let tableBounds: ClosedRange<Int>
init(leftEdgePosition: Int, netPosition: Int, rightEdgePosition: Int) {
self.leftEdgePosition = leftEdgePosition
self.netPosition = netPosition
self.rightEdgePosition = rightEdgePosition
self.tableBounds = leftEdgePosition...rightEdgePosition
}
private var distanceFromNet = 0
/// The side of the table the ping pong ball is headed toward
private var ballDirection: PingPongBallDirection = .towardLeftEdge
func makeIterator() -> ๐ŸŸฆ {
return self
}
/// This gets called for each iteration in the for loop. Once the ball goes beyond the table, we should return nil to stop the for loop.
mutating public func next() -> Int? {
// the ball position we will return if this position is on the table
let ballPosition = ballDirection.locationCalculator(netPosition, distanceFromNet)
// the ball position we will return if the first ball position is not on the table
let redirectedPosition = (!ballDirection).locationCalculator(netPosition, distanceFromNet)
// determine which ball position to return and set up our state for the next call to next()
var ballPositionToReturn: Int?
if tableBounds.contains(ballPosition) {
ballPositionToReturn = ballPosition
let ballMirrorPosition = (!ballDirection).locationCalculator(netPosition, distanceFromNet)
let ballIsTrailingOff = !tableBounds.contains(ballMirrorPosition)
if !ballIsTrailingOff {
// switch the direction because the ball hit the table
ballDirection = !ballDirection
}
// If we're heading to the right, i.e 3 -> 4 in the case of 0 << 3 >> 10, then increase
// the distance from the net.
// If we're trailing off and not ping-ponging any more, then we need to add distance.
if ballDirection == .towardRightEdge || ballIsTrailingOff {
distanceFromNet += 1
}
} else if tableBounds.contains(redirectedPosition) {
ballPositionToReturn = redirectedPosition
// reflect the redirection
ballDirection = !ballDirection
// add distance when we redirect
distanceFromNet += 1
}
return ballPositionToReturn
}
}
enum PingPongBallDirection {
case towardLeftEdge
case towardRightEdge
/// Returns the oppposite direction
static prefix func !(direction: PingPongBallDirection) -> PingPongBallDirection {
switch direction {
case towardLeftEdge: return towardRightEdge
case towardRightEdge: return towardLeftEdge
}
}
// In our world, right is greater and left is lesser.
var locationCalculator: (Int, Int) -> Int {
switch self {
case .towardLeftEdge: return (-)
case .towardRightEdge: return (+)
}
}
}
// Make the syntax work
precedencegroup PingPongPrecedenceGroup {
associativity: left
// this makes sure the ping pong operator gets evaluated before the assignment operator
higherThan: AssignmentPrecedence
}
infix operator ...: PingPongPrecedenceGroup
func ... (lhs: ClosedRange<Int>, rhs: Int) -> ๐ŸŸฆ {
return ๐ŸŸฆ(leftEdgePosition: lhs.lowerBound, netPosition: lhs.upperBound, rightEdgePosition: rhs)
}
for i in 0...10 {
for j in 0...i...10 {
print(j, terminator: " ")
}
print()
}
// OUTPUT:
// 0 1 2 3 4 5 6 7 8 9 10
// 1 2 0 3 4 5 6 7 8 9 10
// 2 3 1 4 0 5 6 7 8 9 10
// 3 4 2 5 1 6 0 7 8 9 10
// 4 5 3 6 2 7 1 8 0 9 10
// 5 6 4 7 3 8 2 9 1 10 0
// 6 7 5 8 4 9 3 10 2 1 0
// 7 8 6 9 5 10 4 3 2 1 0
// 8 9 7 10 6 5 4 3 2 1 0
// 9 10 8 7 6 5 4 3 2 1 0
// 10 9 8 7 6 5 4 3 2 1 0

stateless
Just for anyone working on the syntax.
I wasted an hour of my life figuring out a stateless conversion.
(I couldn't make it simple or elegant - maybe someone else can!)
var plaground = "directly convert a single ping pong index to a plain index"
let L: Int = 10
let S: Int = 7
func ppiToIndex(_ ppi: Int) -> Int {
let inner = S+1 < (L-S) ? (S+1) : (L-S)
let pp = (ppi+1) / ( (ppi % 2 == 1) ? 2 : -2 )
let way = (S < L/2) ? -(inner-ppi-1) : (inner-ppi-1)
return (ppi < inner*2-1) ? S+pp : S+way
}
for i in 0..<L {
print(" \(i) \(ppiToIndex(i)) ")
}
inner is how many from the start inclusive to the nearer end inclusive.
pp is a full-on endless ping pong.
way is the correct direction +/- to add once you pass the inner area.

Think of how you'd do this with a deck of cards, or a set of matchsticks. Just split the series into two at the point where you want to start, reverse the order of one of the resulting series, and alternate pulling values off the two series.
Here's a utility that alternates between two series until both are exhausted:
func alternateUntilBothAreExhausted<T> (arr1:Array<T>, arr2:Array<T>)
-> Array<T> {
var result = Array<T>()
var arr1 = arr1; var arr2 = arr2
while true {
if let last1 = arr1.popLast() {
result.append(last1)
}
if let last2 = arr2.popLast() {
result.append(last2)
}
if arr1.isEmpty && arr2.isEmpty {
return result
}
}
}
So we start with one series, split it, reverse one, and alternate:
func pingPong<T>(array:Array<T>, startingAtIndex ix:Int) -> Array<T> {
let arr1 = array[..<ix]
let arr2 = array[ix...]
return alternateUntilBothAreExhausted(
arr1: Array(arr1), arr2: Array(arr2.reversed()))
}
Example:
let ping = pingPong(array: Array(0..<10), startingAtIndex:4)
// [3, 4, 2, 5, 1, 6, 0, 7, 8, 9]
Wrapping that up in your desired syntax is trivial and is left as an exercise for the reader.

Related

Mathematic calculation using array of numbers and array of arithmetic operators in swift [duplicate]

I am doing a simple calculator, but when performing the multiplication and division, my code doesn't make them a priority over plus and minus.
When doing -> 2 + 2 * 4, result = 16 instead of 10...
How to conform to the math logic inside my switch statement?
mutating func calculateTotal() -> Double {
var total: Double = 0
for (i, stringNumber) in stringNumbers.enumerated() {
if let number = Double(stringNumber) {
switch operators[i] {
case "+":
total += number
case "-":
total -= number
case "รท":
total /= number
case "ร—":
total *= number
default:
break
}
}
}
clear()
return total
}
Assuming you want a generalised and perhaps extensible algorithm for any arithmetic expression, the right way to do this is to use the Shunting Yard algorithm.
You have an input stream, which is the numbers and operators as the user typed them in and you have an output stream, which is the same numbers and operators but rearranged into reverse Polish notation. So, for example 2 + 2 * 4 would be transformed into 2 2 4 * + which is easily calculated by putting the numbers on a stack as you read them and applying the operators to the top items on the stack as you read them.
To do this the algorithm has an operator stack which can be visualised as a siding (hence "shunting yard") into which low priority operators are shunted until they are needed.
The general algorithm is
read an item from the input
if it is a number send it to the output
if the number is an operator then
while the operator on the top of the stack is of higher precedence than the operator you have pop the operator on the stack and send it to the output
push the operator you read from input onto the stack
repeat the above until the input is empty
pop all the operators on the stack into the output
So if you have 2 + 2 * 4 (NB top of the stack is on the left, bottom of the stack is on the right)
start:
input: 2 + 2 * 4
output: <empty>
stack: <empty>
step 1: send the 2 to output
input: + 2 * 4
output: 2
stack: <empty>
step 2: stack is empty so put + on the stack
input: 2 * 4
output: 2
stack: +
step 3: send the 2 to output
input: * 4
output: 2 2
stack: +
step 4: + is lower priority than * so just put * on the stack
input: 4
output: 2 2
stack: * +
step 5: Send 4 to output
input:
output: 2 2 4
stack: * +
step 6: Input is empty so pop the stack to output
input:
output: 2 2 4 * +
stack:
The Wikipedia entry I linked above has a more detailed description and an algorithm that can handle parentheses and function calls and is much more extensible.
For completeness, here is an implementation of my simplified version of the algorithm
enum Token: CustomStringConvertible
{
var description: String
{
switch self
{
case .number(let num):
return "\(num)"
case .op(let symbol):
return "\(symbol)"
}
}
case op(String)
case number(Int)
var precedence: Int
{
switch self
{
case .op(let symbol):
return Token.precedences[symbol] ?? -1
default:
return -1
}
}
var operation: (inout Stack<Int>) -> ()
{
switch self
{
case .op(let symbol):
return Token.operations[symbol]!
case .number(let value):
return { $0.push(value) }
}
}
static let precedences = [ "+" : 10, "-" : 10, "*" : 20, "/" : 20]
static let operations: [String : (inout Stack<Int>) -> ()] =
[
"+" : { $0.push($0.pop() + $0.pop()) },
"-" : { $0.push($0.pop() - $0.pop()) },
"*" : { $0.push($0.pop() * $0.pop()) },
"/" : { $0.push($0.pop() / $0.pop()) }
]
}
struct Stack<T>
{
var values: [T] = []
var isEmpty: Bool { return values.isEmpty }
mutating func push(_ n: T)
{
values.append(n)
}
mutating func pop() -> T
{
return values.removeLast()
}
func peek() -> T
{
return values.last!
}
}
func shuntingYard(input: [Token]) -> [Token]
{
var operatorStack = Stack<Token>()
var output: [Token] = []
for token in input
{
switch token
{
case .number:
output.append(token)
case .op:
while !operatorStack.isEmpty && operatorStack.peek().precedence >= token.precedence
{
output.append(operatorStack.pop())
}
operatorStack.push(token)
}
}
while !operatorStack.isEmpty
{
output.append(operatorStack.pop())
}
return output
}
let input: [Token] = [ .number(2), .op("+"), .number(2), .op("*"), .number(4)]
let output = shuntingYard(input: input)
print("\(output)")
var dataStack = Stack<Int>()
for token in output
{
token.operation(&dataStack)
}
print(dataStack.pop())
If you only have the four operations +, -, x, and รท, you can do this by keeping track of a pendingOperand and pendingOperation whenever you encounter a + or -.
Then compute the pending operation when you encounter another + or -, or at the end of the calculation. Note that + or - computes the pending operation, but then immediately starts a new one.
I have modified your function to take the stringNumbers, operators, and initial values as input so that it could be tested independently in a Playground.
func calculateTotal(stringNumbers: [String], operators: [String], initial: Double) -> Double {
func performPendingOperation(operand: Double, operation: String, total: Double) -> Double {
switch operation {
case "+":
return operand + total
case "-":
return operand - total
default:
return total
}
}
var total = initial
var pendingOperand = 0.0
var pendingOperation = ""
for (i, stringNumber) in stringNumbers.enumerated() {
if let number = Double(stringNumber) {
switch operators[i] {
case "+":
total = performPendingOperation(operand: pendingOperand, operation: pendingOperation, total: total)
pendingOperand = total
pendingOperation = "+"
total = number
case "-":
total = performPendingOperation(operand: pendingOperand, operation: pendingOperation, total: total)
pendingOperand = total
pendingOperation = "-"
total = number
case "รท":
total /= number
case "ร—":
total *= number
default:
break
}
}
}
// Perform final pending operation if needed
total = performPendingOperation(operand: pendingOperand, operation: pendingOperation, total: total)
// clear()
return total
}
Tests:
// 4 + 3
calculateTotal(stringNumbers: ["3"], operators: ["+"], initial: 4)
7
// 4 ร— 3
calculateTotal(stringNumbers: ["3"], operators: ["ร—"], initial: 4)
12
// 2 + 2 ร— 4
calculateTotal(stringNumbers: ["2", "4"], operators: ["+", "ร—"], initial: 2)
10
// 2 ร— 2 + 4
calculateTotal(stringNumbers: ["2", "4"], operators: ["ร—", "+"], initial: 2)
8
// 17 - 2 ร— 3 + 10 + 7 รท 7
calculateTotal(stringNumbers: ["2", "3", "10", "7", "7"], operators: ["-", "ร—", "+", "+", "รท"], initial: 17)
22
First you have to search in the array to see if there is a รท or ร— sign.
Than you can just sum or subtract.
mutating func calculateTotal() -> Double {
var total: Double = 0
for (i, stringNumber) in stringNumbers.enumerated() {
if let number = Double(stringNumber) {
switch operators[i] {
case "รท":
total /= number
case "ร—":
total *= number
default:
break
}
//Remove the number from the array and make another for loop with the sum and subtract operations.
}
}
clear()
return total
}
This will work if you are not using complex numbers.
If you don't care speed, as it's running by a computer and you may use the machine way to handle it. Just pick one feasible calculate to do it and then repeat until every one is calculated.
Just for fun here. I use some stupid variable and function names.
func evaluate(_ values: [String]) -> String{
switch values[1] {
case "+": return String(Int(values[0])! + Int(values[2])!)
case "-": return String(Int(values[0])! - Int(values[2])!)
case "ร—": return String(Int(values[0])! * Int(values[2])!)
case "รท": return String(Int(values[0])! / Int(values[2])!)
default: break;
}
return "";
}
func oneTime(_ string: inout String, _ strings: [String]) throws{
if let first = try NSRegularExpression(pattern: "(\\d+)\\s*(\(strings.map{"\\\($0)"}.joined(separator: "|")))\\s*(\\d+)", options: []).firstMatch(in: string , options: [], range: NSMakeRange(0, string.count)) {
let tempResult = evaluate((1...3).map{ (string as NSString).substring(with: first.range(at: $0))})
string.replaceSubrange( Range(first.range(at: 0), in: string)! , with: tempResult)
}
}
func recursive(_ string: inout String, _ strings: [String]) throws{
var count : Int!
repeat{ count = string.count ; try oneTime(&string, strings)
} while (count != string.count)
}
func final(_ string: inout String, _ strings: [[String]]) throws -> String{
return try strings.reduce(into: string) { (result, signs) in
try recursive(&string, signs)
}}
var string = "17 - 23 + 10 + 7 รท 7"
try final(&string, [["ร—","รท"],["+","-"]])
print("result:" + string)
Using JeremyP method and the Shunting Yard algorithm was the way that worked for me, but I had some differences that had to do with the Operator Associativity(left or right priority) so I had to work with it and I developed the code, which is based on JeremyP answer but uses arrays.
First we have the array with the calculation in Strings, e.g.:
let testArray = ["10","+", "5", "*" , "4", "+" , "10", "+", "20", "/", "2"]
We use the function below to get the RPN version using the Shunting Yard algorithm.
func getRPNArray(calculationArray: [String]) -> [String]{
let c = calculationArray
var myRPNArray = [String]()
var operandArray = [String]()
for i in 0...c.count - 1 {
if c[i] != "+" && c[i] != "-" && c[i] != "*" && c[i] != "/" {
//push number
let number = c[i]
myRPNArray.append(number)
} else {
//if this is the first operand put it on the opStack
if operandArray.count == 0 {
let firstOperand = c[i]
operandArray.append(firstOperand)
} else {
if c[i] == "+" || c[i] == "-" {
operandArray.reverse()
myRPNArray.append(contentsOf: operandArray)
operandArray = []
let uniqOperand = c[i]
operandArray.append(uniqOperand)
} else if c[i] == "*" || c[i] == "/" {
let strongOperand = c[i]
//If I want my mult./div. from right(eg because of parenthesis) the line below is all I need
//--------------------------------
// operandArray.append(strongOperand)
//----------------------------------
//If I want my mult./div. from left
let lastOperand = operandArray[operandArray.count - 1]
if lastOperand == "+" || lastOperand == "-" {
operandArray.append(strongOperand)
} else {
myRPNArray.append(lastOperand)
operandArray.removeLast()
operandArray.append(strongOperand)
}
}
}
}
}
//when I have no more numbers I append the reversed operant array
operandArray.reverse()
myRPNArray.append(contentsOf: operandArray)
operandArray = []
print("RPN: \(myRPNArray)")
return myRPNArray
}
and then we enter the RPN array in the function below to calculate the result. In every loop we remove the numbers and the operand used before and we import the previous result and two "p" in the array so in the end we are left with the solution and an array of "p".
func getResultFromRPNarray(myArray: [String]) -> Double {
var a = [String]()
a = myArray
print("a: \(a)")
var result = Double()
let n = a.count
for i in 0...n - 1 {
if n < 2 {
result = Double(a[0])!
} else {
if a[i] == "p" {
//Do nothing else. Calculations are over and the result is in your hands!!!
} else {
if a[i] == "+" {
result = Double(a[i-2])! + Double(a[i-1])!
a.insert(String(result), at: i-2)
a.remove(at: i - 1)
a.remove(at: i - 1)
a.remove(at: i - 1)
a.insert("p", at: 0)
a.insert("p", at: 0)
} else if a[i] == "-" {
result = Double(a[i-2])! - Double(a[i-1])!
a.insert(String(result), at: i-2)
a.remove(at: i - 1)
a.remove(at: i - 1)
a.remove(at: i - 1)
a.insert("p", at: 0)
a.insert("p", at: 0)
} else if a[i] == "*" {
result = Double(a[i-2])! * Double(a[i-1])!
a.insert(String(result), at: i-2)
a.remove(at: i - 1)
a.remove(at: i - 1)
a.remove(at: i - 1)
a.insert("p", at: 0)
a.insert("p", at: 0)
} else if a[i] == "/" {
result = Double(a[i-2])! / Double(a[i-1])!
a.insert(String(result), at: i-2)
a.remove(at: i - 1)
a.remove(at: i - 1)
a.remove(at: i - 1)
a.insert("p", at: 0)
a.insert("p", at: 0)
} else {
// it is a number so do nothing and go the next one
}
}//no over yet
}//n>2
}//iterating
return result
}//Func

Hackerrank New Year Chaos Swift

I am trying to solve Hackerrank's New Year Chaos problem in Swift. https://www.hackerrank.com/challenges/new-year-chaos/problem
It is about finding the number of bribes people made on a line waiting for a roller coaster ride. For example, there is a total of 3 bribes in this list [2, 1, 5, 3, 4].
Person 2 bribed person 1.
Person 5 bribed person 3 and 4.
If there are more than 2 bribes by a person, the line becomes "Too chaotic".
I was able to get an exponential solution. However, I want to make it linear.
func minimumBribes(q: [Int]) -> Void {
var bribeCount = 0
var chaotic = false
// for i in 0..<q.count {
// if q[i] - (i + 1) > 2 {
// chaotic = true
// break
// }
//
// for j in i + 1..<q.count {
// if q[i] > q[j] {
// bribeCount += 1
// }
// }
// }
var i = 0
while i < q.count - 1 {
if q[i] - (i + 1) > 2 {
chaotic = true
break
} else if q[i] > i + 1 {
bribeCount += (q[i] - (i + 1))
i += 1
} else if q[i] <= i + 1 && q[i] > q[i + 1] && q.indices.contains(i + 1) {
bribeCount += 1
i += 1
} else { // q[i] < q[i + 1]
i += 1
}
}
if chaotic {
print("Too chaotic")
} else {
print(bribeCount)
}
}
I commented out the exponential solution, which works. But the linear solution does not work and I cannot find out why. It works with the following arrays, [3,2,1,6,5,4], [2,5,1,3,4], [1,2,5,3,7,8,6,4], [1,3,4,2,7,6,5,9,8,11,10,14,13,12].
But there is a really long array in one of the test cases of the problem, which I do not get the correct answer with my linear solution.
For this long array, I get 966 with my exponential solution but the linear solution prints 905.
[2,1,5,6,3,4,9,8,11,7,10,14,13,12,17,16,15,19,18,22,20,24,23,21,27,28,25,26,30,29,33,32,31,35,36,34,39,38,37,42,40,44,41,43,47,46,48,45,50,52,49,51,54,56,55,53,59,58,57,61,63,60,65,64,67,68,62,69,66,72,70,74,73,71,77,75,79,78,81,82,80,76,85,84,83,86,89,90,88,87,92,91,95,94,93,98,97,100,96,102,99,104,101,105,103,108,106,109,107,112,111,110,113,116,114,118,119,117,115,122,121,120,124,123,127,125,126,130,129,128,131,133,135,136,132,134,139,140,138,137,143,141,144,146,145,142,148,150,147,149,153,152,155,151,157,154,158,159,156,161,160,164,165,163,167,166,162,170,171,172,168,169,175,173,174,177,176,180,181,178,179,183,182,184,187,188,185,190,189,186,191,194,192,196,197,195,199,193,198,202,200,204,205,203,207,206,201,210,209,211,208,214,215,216,212,218,217,220,213,222,219,224,221,223,227,226,225,230,231,229,228,234,235,233,237,232,239,236,241,238,240,243,242,246,245,248,249,250,247,244,253,252,251,256,255,258,254,257,259,261,262,263,265,264,260,268,266,267,271,270,273,269,274,272,275,278,276,279,277,282,283,280,281,286,284,288,287,290,289,285,293,291,292,296,294,298,297,299,295,302,301,304,303,306,300,305,309,308,307,312,311,314,315,313,310,316,319,318,321,320,317,324,325,322,323,328,327,330,326,332,331,329,335,334,333,336,338,337,341,340,339,344,343,342,347,345,349,346,351,350,348,353,355,352,357,358,354,356,359,361,360,364,362,366,365,363,368,370,367,371,372,369,374,373,376,375,378,379,377,382,381,383,380,386,387,384,385,390,388,392,391,389,393,396,397,394,398,395,401,400,403,402,399,405,407,406,409,408,411,410,404,413,412,415,417,416,414,420,419,422,421,418,424,426,423,425,428,427,431,430,429,434,435,436,437,432,433,440,438,439,443,441,445,442,447,444,448,446,449,452,451,450,455,453,454,457,456,460,459,458,463,462,464,461,467,465,466,470,469,472,468,474,471,475,473,477,476,480,479,478,483,482,485,481,487,484,489,490,491,488,492,486,494,495,496,498,493,500,499,497,502,504,501,503,507,506,505,509,511,508,513,510,512,514,516,518,519,515,521,522,520,524,517,523,525,526,529,527,531,528,533,532,534,530,537,536,539,535,541,538,540,543,544,542,547,548,545,549,546,552,550,551,554,553,557,555,556,560,559,558,563,562,564,561,567,568,566,565,569,572,571,570,575,574,577,576,579,573,580,578,583,581,584,582,587,586,585,590,589,588,593,594,592,595,591,598,599,596,597,602,603,604,605,600,601,608,609,607,611,612,606,610,615,616,614,613,619,618,617,622,620,624,621,626,625,623,628,627,631,630,633,629,635,632,637,636,634,638,640,642,639,641,645,644,647,643,646,650,648,652,653,654,649,651,656,658,657,655,661,659,660,663,664,666,662,668,667,670,665,671,673,669,672,676,677,674,679,675,680,678,681,684,682,686,685,683,689,690,688,687,693,692,691,696,695,698,694,700,701,702,697,704,699,706,703,705,709,707,711,712,710,708,713,716,715,714,718,720,721,719,723,717,722,726,725,724,729,728,727,730,733,732,735,734,736,731,738,737,741,739,740,744,743,742,747,746,745,750,748,752,749,753,751,756,754,758,755,757,761,760,759,764,763,762,767,765,768,766,771,770,769,774,773,776,772,778,777,779,775,781,780,783,784,782,786,788,789,787,790,785,793,791,792,796,795,794,798,797,801,799,803,800,805,802,804,808,806,807,811,809,810,814,812,813,817,816,819,818,815,820,821,823,822,824,826,827,825,828,831,829,830,834,833,836,832,837,839,838,841,835,840,844,842,846,845,843,849,847,851,850,852,848,855,854,853,857,856,858,861,862,860,859,863,866,865,864,867,870,869,868,872,874,875,871,873,877,878,876,880,881,879,884,883,885,882,888,886,890,891,889,893,887,895,892,896,898,894,899,897,902,901,903,905,900,904,908,907,910,909,906,912,911,915,913,916,918,914,919,921,917,923,920,924,922,927,925,929,928,926,932,931,934,930,933,935,937,939,940,938,936,943,944,942,941,947,946,948,945,951,950,949,953,952,956,954,958,957,955,961,962,963,959,964,966,960,965,969,968,971,967,970,974,972,976,973,975,979,977,981,982,978,980,983,986,984,985,989,988,987,990,993,991,995,994,997,992,999,1000,996,998]
Please help me figure out what is wrong with my solution. Thanks in advance!!
Here is my solution which passes all the test cases :)
func minimumBribes(q: [Int]) -> Void {
var bCount = 0
var isChaotic = false
for (key,value) in q.enumerated() {
if (value - 1) - key > 2 {
isChaotic = true
break
}
for index in stride(from: max(0, value - 2), to: key, by: 1){
if q[index] > value {
bCount += 1
}
}
}
isChaotic ? print("Too chaotic") : print("\(bCount)")
}
What you basically need to do is to first check if the element in each loop is on it's correct position. And if not you find out how much further is it from the right position if its greater than 2 you print "Too chaotic". Your solution is correct uptil this point. But if the difference is less than or equal to 2 then you need to increment the bribes and swap the indices to represent updated array. Furthermore if there are two swaps then you need to represent how the array would be effected by these 2 swaps and hence swap these values before the next iteration to ensure the array is in the condition it would be after these swaps.
Please refer to my solution below. It passes for all test cases:
func swapValues( arr:inout [Int],index:Int, times: Int, bribes:inout Int) -> Bool {
if times == 0 {
return false
}
if arr[index] > arr[index+1] {
let temp = arr[index+1]
arr[index+1] = arr[index]
arr[index] = temp
bribes = bribes + 1
return swapValues(arr: &arr, index: index+1, times: times-1,bribes: &bribes)
}else{
var diff = abs(arr[index+1] - (index+2))
if diff > 2 {
print("Too chaotic")
return true
}
var tooChaotic = swapValues(arr: &arr, index: index+1, times: diff,bribes:&bribes)
if tooChaotic {
return true
}
return swapValues(arr: &arr, index: index, times: times, bribes: &bribes)
}
}
func minimumBribes(q: [Int]) -> Void {
var qC = q
var bribes = 0
var i = 0
while i <= qC.count-1{
if i+1 == qC[i] {
i = i + 1
continue
}
let diff = abs(qC[i] - (i+1))
if diff > 2 {
print("Too chaotic")
return
}
var tooChaotic = swapValues(arr: &qC, index: i, times: diff, bribes: &bribes)
if tooChaotic {
return
}
}
print(bribes)
}
I found this short and easy solution.
func minimumBribes(q: [Int]) -> Void {
var ans = 0
var shouldShow = true
for i in stride(from: (q.count - 1), through: 0, by: -1) {
if (q[i] - (i+1) > 2) {
shouldShow = false
break;
}
for j in stride(from: max(0, q[i] - 2), to: i, by: 1){
if q[j] > q[i] {
ans += 1
}
}
}
if shouldShow {
print(ans)
} else {
print("Too chaotic")
} }
https://github.com/AnanthaKrish/example-ios-apps

Cleanest way to wrap array index?

Say I have an array of 5 Ints. What would be the most efficient way to wrap the index of the array if the index were incremented or decremented (for example) the following occurs?
where n = 0: arr[n-1] // -> arr[4] (wraps from 0 back to the end of the array)
where n = 2: arr[n+1] // -> arr[3] (behaves as normal)
where n = 4: arr[n+1] // -> arr[0] (wraps to 0 from the end of the array)
You can use the mod operation which will get you to a range of -count to count, then add count back in and mod again:
let foo = [0, 1, 2, 3, 4, 5]
for i in -6...7 {
print(i, foo[(i % foo.count + foo.count) % foo.count])
}
// -6 0
// -5 1
// -4 2
// -3 3
// -2 4
// -1 5
// 0 0
// 1 1
// 2 2
// 3 3
// 4 4
// 5 5
// 6 0
This works for both directions.
A bit late to the party, but if you're facing the same issue and have a lot of use cases for wrap-around array indices, you could also put the %-solution from the accepted answer in a simple subscript extension of Array, like so:
extension Array {
subscript (wrapping index: Int) -> Element {
return self[(index % self.count + self.count) % self.count]
}
}
Example Usage:
let array = ["a","b","c"]
print( array[wrapping: 0] ) // a
print( array[wrapping: 4] ) // b
print( array[wrapping: -1] ) // c
Cleanest I can do for only positive integers is this
extension Array{
subscript(wrapAround index: Int) -> Element {
return self[index % self.count]
}
}

why my code is slow when finding Fibonacci sum?

I'm writing answers for project Euler Questions in this repo
but having some performance issues in my solution
Question 2:
Each new term in the Fibonacci sequence is generated by adding the previous two terms.
By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
My Solution is
func solution2()
{
func fibonacci(number: Int) -> (Int)
{
if number <= 1
{
return number
}
else
{
return fibonacci(number - 1) + fibonacci(number - 2)
}
}
var sum = 0
print("calculating...")
for index in 2..<50
{
print (index)
if (fibonacci(index) % 2 == 0)
{
sum += fibonacci(index)
}
}
print(sum)
}
My Question is, why it gets super slow after iteration 42, i want to do it for 4000000 as the question says, any help?
solution 2
func solution2_fast()
{
var phiOne : Double = (1.0 + sqrt(5.0)) / 2.0
var phiTwo : Double = (1.0 - sqrt(5.0)) / 2.0
func findFibonacciNumber (nthNumber : Double) -> Int64
{
let nthNumber : Double = (pow(phiOne, nthNumber) - (pow(phiTwo, nthNumber))) / sqrt(5.0)
return Int64(nthNumber)
}
var sum : Int64 = 0
print("calculating...")
for index in 2..<4000000
{
print (index)
let f = findFibonacciNumber(Double(index))
if (f % 2 == 0)
{
sum += f
}
}
print(sum)
}
The most important thing about PE questions is to think about what it is asking.
This is not asking you to produce all Fibonacci numbers F(n) less than 4000000. It is asking for the sum of all even F(n) less than 4000000.
Think about the sum of all F(n) where F(n) < 10.
1 + 2 + 3 + 5 + 8
I could do this by calculating F(1), then F(2), then F(3), and so on... and then checking they are less than 10 before adding them up.
Or I could store two variables...
F1 = 1
F2 = 2
And a total...
Total = 3
Now I can turn this into a while loop and lose the recursion altogether. In fact, the most complex thing I'm doing is adding two numbers together...
I came up with this...
func sumEvenFibonacci(lessThan limit: Int) -> Int {
// store the first two Fibonacci numbers
var n1 = 1
var n2 = 2
// and a cumulative total
var total = 0
// repeat until you hit the limit
while n2 < limit {
// if the current Fibonacci is even then add to total
if n2 % 2 == 0 {
total += n2
}
// move the stored Fibonacci numbers up by one.
let temp = n2
n2 = n2 + n1
n1 = temp
}
return total
}
It runs in a fraction of a second.
sumEvenFibonacci(lessThan: 4000000)
Finds the correct answer.
In fact this... sumEvenFibonacci(lessThan: 1000000000000000000) runs in about half a second.
The second solution seems to be fast(er) although an Int64 will not be sufficient to store the result. The sum of Fibonacci numbers from 2..91 is 7,527,100,471,027,205,936 but the largest number you can store in an Int64 is 9,223,372,036,854,775,807. For this you need to use some other types like BigInteger
Because you use the recursive, and it cache in the memory.If you iteration 42, it maybe has so many fibonacci function in your memory, and recursive.So it isn't suitable for recursive, and you can store the result in the array, not the reason of the swift.
this is the answer in two different ways
func solution2_recursive()
{
func fibonacci(number: Int) -> (Int)
{
if number <= 1
{
return number
}
else
{
return fibonacci(number - 1) + fibonacci(number - 2)
}
}
var sum = 0
print("calculating...")
for index in 2..<50
{
print (index)
let f = fibonacci(index)
if( f < 4000000)
{
if (f % 2 == 0)
{
sum += f
}
}
else
{
print(sum)
return
}
}
}
solution 2
func solution2()
{
var phiOne : Double = (1.0 + sqrt(5.0)) / 2.0
var phiTwo : Double = (1.0 - sqrt(5.0)) / 2.0
func findFibonacciNumber (nthNumber : Double) -> Int64
{
let nthNumber : Double = (pow(phiOne, nthNumber) - (pow(phiTwo, nthNumber))) / sqrt(5.0)
return Int64(nthNumber)
}
var sum : Int64 = 0
print("calculating...")
for index in 2..<50
{
let f = findFibonacciNumber(Double(index))
if(f < 4000000)
{
if (f % 2 == 0)
{
sum += f
}
}
else
{
print(sum)
return
}
}
}

Swift convert decimal String to UInt8-Array

I have a very long String (600+ characters) holding a big decimal value (yes I know - sounds like a BigInteger) and need the byte representation of this value.
Is there any easy way to archive this with swift?
static func decimalStringToUInt8Array(decimalString:String) -> [UInt8] {
...
}
Edit: Updated for Swift 5
I wrote you a function to convert your number string. This is written in Swift 5 (originally Swift 1.2).
func decimalStringToUInt8Array(_ decimalString: String) -> [UInt8] {
// Convert input string into array of Int digits
let digits = Array(decimalString).compactMap { Int(String($0)) }
// Nothing to process? Return an empty array.
guard digits.count > 0 else { return [] }
let numdigits = digits.count
// Array to hold the result, in reverse order
var bytes = [UInt8]()
// Convert array of digits into array of Int values each
// representing 6 digits of the original number. Six digits
// was chosen to work on 32-bit and 64-bit systems.
// Compute length of first number. It will be less than 6 if
// there isn't a multiple of 6 digits in the number.
var ints = Array(repeating: 0, count: (numdigits + 5)/6)
var rem = numdigits % 6
if rem == 0 {
rem = 6
}
var index = 0
var accum = 0
for digit in digits {
accum = accum * 10 + digit
rem -= 1
if rem == 0 {
rem = 6
ints[index] = accum
index += 1
accum = 0
}
}
// Repeatedly divide value by 256, accumulating the remainders.
// Repeat until original number is zero
while ints.count > 0 {
var carry = 0
for (index, value) in ints.enumerated() {
var total = carry * 1000000 + value
carry = total % 256
total /= 256
ints[index] = total
}
bytes.append(UInt8(truncatingIfNeeded: carry))
// Remove leading Ints that have become zero.
while ints.count > 0 && ints[0] == 0 {
ints.remove(at: 0)
}
}
// Reverse the array and return it
return bytes.reversed()
}
print(decimalStringToUInt8Array("0")) // prints "[0]"
print(decimalStringToUInt8Array("255")) // prints "[255]"
print(decimalStringToUInt8Array("256")) // prints "[1,0]"
print(decimalStringToUInt8Array("1024")) // prints "[4,0]"
print(decimalStringToUInt8Array("16777216")) // prints "[1,0,0,0]"
Here's the reverse function. You'll notice it is very similar:
func uInt8ArrayToDecimalString(_ uint8array: [UInt8]) -> String {
// Nothing to process? Return an empty string.
guard uint8array.count > 0 else { return "" }
// For efficiency in calculation, combine 3 bytes into one Int.
let numvalues = uint8array.count
var ints = Array(repeating: 0, count: (numvalues + 2)/3)
var rem = numvalues % 3
if rem == 0 {
rem = 3
}
var index = 0
var accum = 0
for value in uint8array {
accum = accum * 256 + Int(value)
rem -= 1
if rem == 0 {
rem = 3
ints[index] = accum
index += 1
accum = 0
}
}
// Array to hold the result, in reverse order
var digits = [Int]()
// Repeatedly divide value by 10, accumulating the remainders.
// Repeat until original number is zero
while ints.count > 0 {
var carry = 0
for (index, value) in ints.enumerated() {
var total = carry * 256 * 256 * 256 + value
carry = total % 10
total /= 10
ints[index] = total
}
digits.append(carry)
// Remove leading Ints that have become zero.
while ints.count > 0 && ints[0] == 0 {
ints.remove(at: 0)
}
}
// Reverse the digits array, convert them to String, and join them
return digits.reversed().map(String.init).joined()
}
Doing a round trip test to make sure we get back to where we started:
let a = "1234567890987654321333555777999888666444222000111"
let b = decimalStringToUInt8Array(a)
let c = uInt8ArrayToDecimalString(b)
if a == c {
print("success")
} else {
print("failure")
}
success
Check that eight 255 bytes is the same as UInt64.max:
print(uInt8ArrayToDecimalString([255, 255, 255, 255, 255, 255, 255, 255]))
print(UInt64.max)
18446744073709551615
18446744073709551615
You can use the NSData(int: Int, size: Int) method to get an Int to NSData, and then get the bytes from NSData to an array: [UInt8].
Once you know that, the only thing is to know the size of your array. Darwin comes in handy there with the powfunction. Here is a working example:
func stringToUInt8(string: String) -> [UInt8] {
if let int = string.toInt() {
let power: Float = 1.0 / 16
let size = Int(floor(powf(Float(int), power)) + 1)
let data = NSData(bytes: &int, length: size)
var b = [UInt8](count: size, repeatedValue: 0)
return data.getBytes(&b, length: size)
}
}
You can always do:
let bytes = [UInt8](decimalString.utf8)
If you want the UTF-8 bytes.
Provided you had division implemented on your decimal string you could divide by 256 repeatedly. The reminder of the first division is the your least significant byte.
Here's an example of division by a scalar in C (assumed the length of the number is stored in A[0] and writes the result in the same array):
void div(int A[], int B)
{
int i, t = 0;
for (i = A[0]; i > 0; i--, t %= B)
A[i] = (t = t * 10 + A[i]) / B;
for (; A[0] > 1 && !A[A[0]]; A[0]--);
}

Resources