Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 years ago.
Improve this question
From my understanding, artificial intelligence can be divided into two subsets, deep learning and machine learning. Which one of those categories does the minimax algorithm fall into when developing an AI to play chess?
1- AI is much wider than Machine Learning. ML is a subset of Learning, Learning is a subset of AI
2- Deep Learning is a platform for ML( if not a subset of ML), to help do the automatic feature selection at the same time as training.
3- There is not really such a boundary of which algorithm belongs to which part of AI
4- A major part of AI named "Problem Solving" in the AI modern approach book. MinMax has been discussed there if I am not mistaken
Related
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 years ago.
Improve this question
Can someone please give me some suggestions on which feature selection techniques for gene classification should I use?
The major problem to work with gene expression data, with a large number of dimensions and small sample size. Instead of standard feature extraction/selection algorithms, generally, kernel-based feature selection algorithms are applied to gene expression data such as KBMTL(kernelized Bayesian multitask learning), NDR(nonlinear dimensionality reduction) or regularized linear methods such as LASSO and Elastic-net.
You can check these papers to learn more about how to make efficient feature selection on gene expression data.
paper1
paper2
paper3
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
Im developing android app fro groceries shop.
How can include or what way i can use ML, AI, Deep learning in my app.
Im just beginner to ML , AI , DL. IM developing app for engineering mini project. So that parallely i can learn both things.
AI means getting a computer to mimic human behavior in some way.
Machine learning is a subset of AI, and it consists of the techniques that enable computers to figure things out from the data and deliver AI applications.
Deep learning, meanwhile, is a subset of machine learning that enables computers to solve more complex problems.
In addition to Zunaib's answer:
Machine Learning is a subset of AI which consists of types of algorithms that are able to autonomously calculate conclusions based on the given data. Where as Deep Learning is a subset of machine learning where we use different types of Neural Networks as algorithms.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
I have just completed Machine learning course from Andrew ng and would like to proceed further.
I also want the python implementation of Machine Learning from beginning so that i can practice on Kaggle.
Also, is there any better book or tutorial or some resource like that so that i can proceed further without wasting any time searching such resources.
The best book unequivocally that has implementation of Machine Learning algorithms in Python is the "Introduction to Machine Learning with Python: A Guide for Data Scientists" by Andreas C. Müller. Machine Learning algorithms in Python can be used from a package called scikit-learn. This package has everything you need for Machine Learning. All the algorithms, scaling, cross validation. And that book is written by the chief developer of scikit-learn itself.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 5 years ago.
Improve this question
I want to train an output vector(which is from deep learning model) like fixed vector. Hence, I chose a cosine similarity between two vectors as the objective function. However, I don't know if that is a correct approach for my need.
No. The cosine similarity is a measure of how similar two items (samples in your dataset) are.
In contrast, the objective function when training a neural network should be a definition of the current estimation error over the data - so they are different things.
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 6 years ago.
Improve this question
I'm kinda confused about machine learning is classification in machine learning is algorithm amd is suprivied and unsupervised is algorithms or type of ML? What are some machine learning algorithms?
Didnt understand your question, but some ML algorithms are:
Linear Regression
Logistic Regression
Neural Networks
Support Vector Machines
Desicion Trees
K-Nearest Neighbor
K-Means
Principal Component Analysis
And some more....