I am reading papers on how LSTM is used for regression in time-series. During training, the dataset is split in fixed-size chunks that depend on the window size. The window slides over the training data, and these small sequences are fed into the network.
For testing, I would expect the test set to be split likewise in fixed-size sequences, but I read that this is not necessary and often the whole sequence is fed into the network for inference.
Questions
How does this work? What do authors mean with "the whole sequence"? Is the input for the LSTM during the test phase completely independent on the window-size used during training?
Related
I'm using Keras for a task that has one main target and several optional targets. When I train against all targets (and so have multiple outputs), it takes the same amount of time per epoch as when training with the single target/output. Shouldn't we expect it to take somewhat longer in the multi-target scenario?
This generally depends on how big is the output layer. In theory, more neurons to the output layer mean a bigger transition matrix (i.e weights, when assuming MLP), which means that the backpropagation should calculate derivatives with respect to more values, but when these values are relatively small to begin with I presume there wouldn't be much difference
Can a recurrent neural network be used to learn a sequence with slightly different variations? For example, could I get an RNN trained so that it could produce a sequence of consecutive integers or alternate integers if I have enough training data?
For example, if I train using
1,2,3,4
2,3,4,5
3,4,5,6
and so on
and also train the same network using
1,3,5,7
2,4,6,8
3,5,7,9
and so on,
would I be able to predict both sequences successfully for the test set?
What if I have even more variations in the training data like sequences of every three integers or every four integers, et cetera?
Yes, provided there is enough information in the sequence so that it is not ambiguous, a neural network should be able to learn to complete these sequences correctly.
You should note a few details though:
Neural networks, and ML models in general, are bad at extrapolation. A simple network is very unlikely to learn about sequences in general. It will never learn the concept of sequence logic in the way a child quickly would. So if you feed in test data outside of its experience (e.g. steps of 3 between items, when they were not in the training data), it will perform badly.
Neural networks prefer scaled inputs - a common pre-processing step is to normalise to mean 0 standard deviation 1 for each input column. Whilst it is possible for a network to accept larger range of numbers at inputs, that will reduce effectiveness of training. With a generated training set such as artificial numeric sequences, you may be able to force your way through that by training for longer with more examples.
You will need more neurons, and more layers, to support a larger variation of sequences.
For a RNN, it will predict badly if the sequence it has processed so far is ambiguous. E.g. if you train 1,2,3,4 and 1,2,3,5 with equal numbers of samples, it will predict either 4.5 (for regression) or 50% chance 4 or 5 (for classifier) when it shown sequence 1,2,3 and asked to predict.
Before applying SVM on my data I want to reduce its dimension by PCA. Should I separate the Train data and Test data then apply PCA on each of them separately or apply PCA on both sets combined then separate them?
Actually both provided answers are only partially right. The crucial part here is what is the exact problem you are trying to solve. There are two basic possible settings which can be considered, and both are valid under some assumptions.
Case 1
You have some data (which you splitted to train and test) and in the future you will get more data coming from the same distribution.
If this is the case, you should fit PCA on train data, then SVM on its projection, and for testing you just apply already fitted PCA followed by already fitted SVM, and you do exactly the same for new data that will come. This way your test error (under some "size assumptions" should approximate your expected error).
Case 2
You have some data (which you splitted train and test) and in the future you will obtain a big chunk of unlabeled data and you will be able to fit your model then.
In such a case, you fit PCA on whole data provided, learn SVM on labeled part (train set) and evaluate on test set. This way, once new data arrives you can fit PCA using both your data and new ones, and then - train SVM on your old data (as this is the only one having labels). Under the assumption that again - data comes from the same distributions, everything is correct here. You use more data to fit PCA only to have a better estimator (maybe your data is really high dimensional and PCA fails with small sample?).
You should do them separately. If you run pca on both sets combined then you are going to introduce a bias in your svn. The goal of the test set is to see how your algorithm will perform without prior knowledge of the data.
Learn the Projection Matrix of PCA on the train set and use this to reduce the dimensions of the test data.
One benifit is this way you don't have to rely on collecting sufficient data in the test set if you are applying your classifier for actual run time where test data comes one sample at a time.
Also I think separate train and test PCA will fail.Why?
Think of PCA as giving you features, and then you learn a classifier over these features. If over time your data shifts, then the test features you get using PCA would be different, and you don't have a classifier trained on these features. Even if the set of directions/features of the PCA remain same but their order varies your classifier still fails.
I'm trying to perform sentiment analysis on a dataset.But there is no existing corpus that my classifier can be trained on that is similar to the dataset that I want to analyze. My question is as follows: Can I use a randomly sampled subset of this data for training/validation phases and then use the trained classifier for performing analysis on the larger dataset? I plan to introduce some variability by adding data points to the training set that are similar to the application dataset but not from that set. Is this is a valid approach?
What you are looking for is the standard procedure of cross-validation. During cross-validation you split your data on (let's assume) 80%-20% training testing data and make 5-10 (depending on the size of data you have) different splits. So I would suggest that you keep a subset of the data and then perform cross-validation on this subset. This is the optimal way to train your model.
I'm starting to use LIBSVM for regression analysis. My world has about 20 features and thousands to millions of training samples.
I'm curious about two things:
Is there a metric that indicates the accuracy or confidence of the model, perhaps in the .model file or elsewhere?
How can I determine whether or not a feature is significant? E.g., if I'm trying to predict body weight as a function of height, shoulder width, gender and hair color, I might discover that hair color is not a significant feature in predicting weight. Is that reflected in the .model file, or is there some way to find out?
libSVM calculates p-values for test points based upon the certainty of the classifier (i.e., how far is the test point from the decision boundary and how wide are the margins).
I think you should consider the determination of feature importance a separate problem from training your SVMs. There are tons of approaches for "feature selection" (just open any text book) but one easy to understand, straightforward approach would be a simple cross-validation as follows:
Divide your dataset into k folds (e.g., k = 10 is common)
For each of the k folds:
Separate your data into train/test sets (the current fold is the test set, the rest are the training set)
Train your SVM classifier using only n-1 of your n features
Measure the prediction performance
Average the performance of your n-1 feature classifier for all k test folds
Repeat 1-3 for all remaining features
You could also do the reverse where you test each of the n features separately but you will likely miss out on important second and higher order interactions between the features.
In general, however, SVMs are good at ignoring irrelevant features.
You may also want to try and visualize your data using Principal Components Analysis to get a feel for how the data is distributed.
The F-score is a metric commonly used for features selection in Machine Learning.
Since version 3.0, LIBSVM library includes a directory called tools. In that directory is a python script called fselect.py, which calculates F-score. To use it, just execute from the command line and pass in the file comprised of training data (and optionally a testing data file).
python fselect.py data_training data_testing
The output is comprised of an fscore for each of the features in your data set which corresponds to the importance of that feature to the model result (regression score).