I want to create one CNN model including all nSeizures models instead of creating model for each seizure file, but i got this error < AttributeError: 'NoneType' object has no attribute 'fit_generator'>.
for i in range(0, nSeizure):
print(nSeizure)
print('SEIZURE OUT: '+str(i+1))
print('Training start')
## create model
model = createModel()
filesPath=getFilesPathWithoutSeizure(i, indexPat)
## create one model including all nSeizures models
for model in range(0, nSeizure):
mylist.append(model)
data=mylist.append(model)
history=data.fit_generator(generate_arrays_for_training(indexPat, filesPath, end=75),
validation_data=generate_arrays_for_training(indexPat, filesPath,
start=75),
#steps_per_epoch=10000, epochs=10)
steps_per_epoch=int((len(filesPath)-int(len(filesPath)/100*25))),
validation_steps=int((len(filesPath)-int(len(filesPath)/100*75))),
verbose=2,
epochs=300, max_queue_size=2, shuffle=True, callbacks=[callback])
mylist.append(model) returns None.
when you call data.fit_generator it effectively means None.fit_generator.
Consider rewriting the code.
Related
All my models are initialized with the below:
def intiailize_clf_models(self):
model = RandomForestClassifier(random_state=42)
self.clf_models.append((model))
model = ExtraTreesClassifier(random_state=42)
self.clf_models.append((model))
model = MLPClassifier(random_state=42)
self.clf_models.append((model))
model = LogisticRegression(random_state=42)
self.clf_models.append((model))
model = xgb.XGBClassifier(random_state=42)
self.clf_models.append((model))
model = lgb.LGBMClassifier(random_state=42)
self.clf_models.append((model))
Which loops through the models and performs k fold cross validation with :
def kfold_cross_validation(self):
clf_models = self.get_models()
models = []
self.results = {}
for model in clf_models:
self.current_model_name = model.__class__.__name__
cross_validate = cross_val_score(model, self.xtrain, self.ytrain, cv=4)
self.mean_cross_validation_score = cross_validate.mean()
print("Kfold cross validation for", self.current_model_name)
self.results[self.current_model_name] = self.mean_cross_validation_score
models.append(model)
Anytime i run this cross validation, i get a different result even after i have set a random state on the different models. I would like to know why i get different results in cross validation and what can be done about it
This is because you did not set the random_state for your k-fold generator. By default when you pass a int value for cv as
cross_validate = cross_val_score(model, self.xtrain, self.ytrain, cv=4)
cross_val_score will call (Stratified)KFold using a different random state with every call causing your model's parameters to differ leading to different results.
The relevant part from the source file.
cv: int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross validation,
- int, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass, :class:`StratifiedKFold` is used. In all
other cases, :class:`KFold` is used.
To remedy this you can pass your own cross-validation generator with a controlled random state as stated in the documentation above. For example:
# (code untested)
from sklearn.model_selection import StratifiedKFold
skf = StratifiedKFold(n_splits=4, random_state=42)
cross_validate = cross_val_score(model, self.xtrain, self.ytrain, cv=skf)
I found the solution to my question.
Setting a random seed with the below solved the problem:
seed = np.random.seed(22)
I'm trying to use the ResNet-50 model from the ONNX model zoo and load and train it in CNTK for an image classification task. The first thing that confuses me is, that the batch axis (not sure what's the official name for it, dynamic axis?) is set to 1 in this model:
Why is that? Couldn't it simply be [3x224x224]? In this model for example, the input looks like this:
To load the model and use my own Dense layer, I use the following code:
def create_model(num_classes, input_features, freeze=False):
base_model = load_model("restnet-50.onnx", format=ModelFormat.ONNX)
feature_node = find_by_name(base_model, "gpu_0/data_0")
last_node = find_by_uid(base_model, "Reshape2959")
substitutions = {
feature_node : placeholder(name='new_input')
}
cloned_layers = last_node.clone(CloneMethod.clone, substitutions)
cloned_out = cloned_layers(input_features)
z = Dense(num_classes, activation=softmax, name="prediction") (cloned_out)
return z
For training I use (shortened):
# datasets = list of classes
feature = input_variable(shape=(1, 3, 224, 224))
label = input_variable(shape=(1,3))
model = create_model(len(datasets), feature)
loss = cross_entropy_with_softmax(model, label)
# some definitions for learner, epochs, ProgressPrinters missing
for epoch in range(epochs):
loss.train((X_current,y_current), parameter_learners=[learner], callbacks=[progress_printer])
X_current is a single image and y_current the corresponding class label both encoded as numpy arrays with the followings shapes
X_current.shape
(1, 3, 224, 224)
y_current.shape
(1, 3)
When I try to train the model, I get
"ValueError: ToBatchAxis7504 ToBatchAxisNode operation can only operate on tensor without minibatch data (no layout)"
What's wrong here?
I have trained a model and deployed it to tensorflow-serving for inference.
I am getting this error when making a request:
<Response [400]>
{'error': 'transpose expects a vector of size 5. But input(1) is a vector of size 3\n\t [[{{node bidirectional_1/transpose}} = Transpose[T=DT_FLOAT, Tperm=DT_INT32, _class=["loc:#bidirectional_1/TensorArrayUnstack/TensorArrayScatter/TensorArrayScatterV3"], _output_shapes=[[50,?,512]], _device="/job:localhost/replica:0/task:0/device:CPU:0"](embedding_1/embedding_lookup, Attention/transpose/perm)]]'}
The notable difference between this model and the first I deployed that worked without issue is that it contains a Keras custom Layer whereas my successful attempt contained only standard Keras layers.
This is how I am testing the POST request to my tf-serving model:
with open("CNN_last_test_set.pkl", "rb") as fp:
x_arr_test, y_test = pickle.load(fp)
out = x_arr_test[:1, :]
out = out.tolist()
payload = {
"instances": [{'input': [out]}]
}
r = requests.post('http://localhost:9000/v1/models/prod_mod:predict', json=payload)
pred = json.loads(r.content.decode('utf-8'))
To create the tensorflow model object to use with tf-serving I am using this function:
def export_model_custom_layer(filename, export_path_base):
# set the mode to test time.
K.set_learning_phase(0)
model = keras.models.load_model(filename, custom_objects={"Attention": Attention})
sess = K.get_session()
# set the path to save the model and model version
export_version = 1
export_path = os.path.join(
tf.compat.as_bytes(export_path_base),
tf.compat.as_bytes(str(export_version)))
tf.saved_model.simple_save(
sess,
export_path,
inputs={'input': model.input},
outputs={t.name.split(':')[0]: t for t in model.outputs},
legacy_init_op=tf.tables_initializer())
Where I've defined my customer layer as a custom object, in order for this to work I've added this function to my customer layer:
def get_config(self):
config = {
'name': "Attention"
}
base_config = super(Attention, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
When I predict with the model using the same data format as the tf-serving model is receiving using standard keras model.predict(), it works as intended:
class Attention(Layer):...
with open("CNN_last_test_set.pkl", "rb") as fp:
x_arr_test, y_test = pickle.load(fp)
model = keras.models.load_model(r"Data/modelCNN.model", custom_objects={"Attention": Attention})
out = x_arr_test[:1, :]
test1 = out.shape
out = out.tolist()
test = model.predict([out])
>> print(test)
>> [[0.21351092]]
This leads me to believe that the issue is happening either when I export the model from keras to the .pb file or in some way the model is being run in the docker container.
I am not sure what to make of this error but I'm assuming that this is related to my custom layer object considering that it worked with my previous model that only contained standard Keras layers.
Any help is greatly appreciated, thanks!
EDIT: I solved the issue, the problem was that my input data had two extra dimensions than necessary. I realized that when I removed the brackets from around the variable "out" my error changed from being 'transpose expects a vector of size 5' to 'transpose expects a vector of size 4'. So I reshaped my "out" variable from being (1, 50) to (50,) & removed the brackets and the problem resolved itself.
I have a stateful RNN model with several GRU layers that was created in Keras.
I have to run this model now from Java, so I dumped the model as protobuf, and I'm loading it from Java TensorFlow.
This model must be stateful because features will be fed one timestep at-a-time.
As far as I understand, in order to achieve statefulness in a TensorFlow model, I must somehow feed in the last state every time I execute the session runner, and also that the run would return the state after the execution.
Is there a way to output the state in the Keras model?
Is there a simpler way altogether to get a stateful Keras model to work as such using TensorFlow?
Many thanks
An alternative solution is to use the model.state_updates property of the keras model, and add it to the session.run call.
Here is a full example that illustrates this solutions with two lstms:
import tensorflow as tf
class SimpleLstmModel(tf.keras.Model):
""" Simple lstm model with two lstm """
def __init__(self, units=10, stateful=True):
super(SimpleLstmModel, self).__init__()
self.lstm_0 = tf.keras.layers.LSTM(units=units, stateful=stateful, return_sequences=True)
self.lstm_1 = tf.keras.layers.LSTM(units=units, stateful=stateful, return_sequences=True)
def call(self, inputs):
"""
:param inputs: [batch_size, seq_len, 1]
:return: output tensor
"""
x = self.lstm_0(inputs)
x = self.lstm_1(x)
return x
def main():
model = SimpleLstmModel(units=1, stateful=True)
x = tf.placeholder(shape=[1, 1, 1], dtype=tf.float32)
output = model(x)
sess = tf.Session()
sess.run(tf.initialize_all_variables())
res_at_step_1, _ = sess.run([output, model.state_updates], feed_dict={x: [[[0.1]]]})
print(res_at_step_1)
res_at_step_2, _ = sess.run([output, model.state_updates], feed_dict={x: [[[0.1]]]})
print(res_at_step_2)
if __name__ == "__main__":
main()
Which produces the following output:
[[[0.00168626]]]
[[[0.00434444]]]
and shows that the lstm state is preserved between batches.
If we set stateful to False, the output becomes:
[[[0.00033928]]]
[[[0.00033928]]]
Showing that the state is not reused.
ok, so I managed to solve this problem!
What worked for me was creating tf.identity tensors for not only the outputs, as is standard, but also for the state tensors.
In the Keras models, the state tensors can be found by doing:
model.updates
Which gives something like this:
[(<tf.Variable 'gru_1_1/Variable:0' shape=(1, 70) dtype=float32_ref>,
<tf.Tensor 'gru_1_1/while/Exit_2:0' shape=(1, 70) dtype=float32>),
(<tf.Variable 'gru_2_1/Variable:0' shape=(1, 70) dtype=float32_ref>,
<tf.Tensor 'gru_2_1/while/Exit_2:0' shape=(1, 70) dtype=float32>),
(<tf.Variable 'gru_3_1/Variable:0' shape=(1, 4) dtype=float32_ref>,
<tf.Tensor 'gru_3_1/while/Exit_2:0' shape=(1, 4) dtype=float32>)]
The 'Variable' is used for inputting the states, and the 'Exit' for outputs of the new states.
So I created tf.identity out of the 'Exit' tensors. I gave them meaningful names, e.g.:
tf.identity(state_variables[j], name='state'+str(j))
Where state_variables contained only the 'Exit' tensors
Then used the input variables (e.g. gru_1_1/Variable:0) to feed the model state from TensorFlow, and the identity variables I created out of the 'Exit' tensors were used to extract the new states after feeding the model at each timestep
I am trying to construct one LSTM model for classification. And I used the fit_generator to fit the memory. The codes are:
model = Sequential()
model.add(LSTM(data_dim, return_sequences=True,
input_shape=(timesteps, data_dim))) # returns a sequence of vectors of dimension 32
model.add(Dropout(0.5))
model.add(Dense(n_classes)) # return the target value
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics= ['accuracy'])
encoder = load_model('encoder.h5')
model.fit_generator(generate_batches_from_file(path, batchSize, raw_targets, class_weights),
steps_per_epoch=steps_per_epoch,
epochs=scans * n_chunks_train )
And the generator code is like:
def generate_batches_from_file(path, batchSize, raw_targets, class_weights):
while True:
with open(path, 'r') as file_to_read:
do_somthing()
yield something
After processing 'batchSize' data, we will yield something.
My Question is: In my eyes, the 'generate_batches_from_file' generator will read the file to the end only once. At the end of the file, it will break the while loop. If I want to scan the file multiple times, what should I do? Could I set some parameters to achieve this?