How to Decompose and Visualise Slope Component in Tensorflow Probability - time-series

I'm running tensorflow 2.1 and tensorflow_probability 0.9. I have fit a Structural Time Series Model with a seasonal component. I am using code from the Tensorflow Probability Structural Time Series Probability example:
Tensorflow Github.
In the example there is a great plot where the decomposition is visualised:
# Get the distributions over component outputs from the posterior marginals on
# training data, and from the forecast model.
component_dists = sts.decompose_by_component(
demand_model,
observed_time_series=demand_training_data,
parameter_samples=q_samples_demand_)
forecast_component_dists = sts.decompose_forecast_by_component(
demand_model,
forecast_dist=demand_forecast_dist,
parameter_samples=q_samples_demand_)
demand_component_means_, demand_component_stddevs_ = (
{k.name: c.mean() for k, c in component_dists.items()},
{k.name: c.stddev() for k, c in component_dists.items()})
(
demand_forecast_component_means_,
demand_forecast_component_stddevs_
) = (
{k.name: c.mean() for k, c in forecast_component_dists.items()},
{k.name: c.stddev() for k, c in forecast_component_dists.items()}
)
When using a trend component, is it possible to decompose and visualise both:
trend/_level_scale & trend/_slope_scale
I have tried many permutations to extract the nested element of the trend component with no luck.
Thanks for your time in advance.

We didn't write a separate STS interface for this, but you can access the posterior on latent states (in this case, both the level and slope) by directly querying the underlying state-space model for its marginal means and covariances:
ssm = model.make_state_space_model(
num_timesteps=num_timesteps,
param_vals=parameter_samples)
posterior_means, posterior_covs = (
ssm.posterior_marginals(observed_time_series))
You should also be able to draw samples from the joint posterior by running ssm.posterior_sample(observed_time_series, num_samples).
It looks like there's currently a glitch when drawing posterior samples from a model with no batch shape (Could not find valid device for node. Node:{{node Reshape}}): while we fix that, it should work to add an artificial batch dimension as a workaround:
ssm.posterior_sample(observed_time_series[tf.newaxis, ...], num_samples).

Related

Transforming Features to increase similarity

I have a large dataset (~20,000 samples x 2,000 features-- each sample w/ a corresponding y-value) that I'm constructing a regression ML model for.
The input vectors are bitvectors with either 1s or 0s at each position.
Interestingly, I have noticed that when I 'randomly' select N samples such that their y-values are between two arbitrary values A and B (such that B-A is much smaller than the total range of values in y), the subsequent model is much better at predicting other values with the A-->B range not used in the training of the model.
However, the overall similarity of the input X vectors for these values are in no way more similar than any random selection of X values across the whole dataset.
Is there an available method to transform the input X-vectors such that those with more similar y-values are "closer" (I'm not particular the methodology, but it could be something like cosine similarity), and those with not similar y-values are separated?
After more thought, I believe this question can be re-framed as a supervised clustering problem. What might be able to accomplish this might be as simple as:
import umap
print(df.shape)
>> (23,312, 2149)
print(len(target))
>> 23,312
embedding = umap.UMAP().fit_transform(df, y=target)

Derive the right k in k-means clustering (including k = 1) in pyspark

I want to check if a clustering would be helpful or not on my coordinates.
I'm dealing with trajectories and want to check if all of them are starting on a same area (the trajectories are different). Thus the aim here is to characterise the most frequent departure points.
However, sometimes there is no need for clustering. I'm using K-means here. I had thought of using the Silhouette Score but I don't see if it is mathematically correct for the case where there is only one cluster. DBScan will not be a good clustering as density are not similar in the clusters I wanted to build.
Would you have an idea to create a kind of check between k=1 and k=3, which would be the best split for my data? I'm dealing here with data with coordinates (latitude/longitude) where the starting point is not 100% fixed but can vary within 2km around a kind of barycentre.
Simple extract with k=2 :
from pyspark.ml.feature import VectorAssembler
vecAssembler = VectorAssembler(inputCols=["lat", "lon"], outputCol="features")
df1= vecAssembler.transform(df)
from pyspark.ml.clustering import KMeans
from pyspark.ml.evaluation import ClusteringEvaluator
# Loads data.
# Trains a k-means model.
kmeans = KMeans().setK(2).setSeed(1)
model = kmeans.fit(df1.select('features'))
# Make predictions
transformed = model.transform(df1)
evaluator = ClusteringEvaluator(predictionCol='prediction', featuresCol='features', \
metricName='silhouette', distanceMeasure='squaredEuclidean')
evaluator.evaluate(transformed)
Is there a way to compute in pySpark a case with k=1 ? in order to derive Elbow or gap statistics ?

Learning a Sin function

I'm new to Machine Learning
I' building a simple model that would be able to predict simple sin function
I generated some sin values, and feeding them into my model.
from math import sin
xs = np.arange(-10, 40, 0.1)
squarer = lambda t: sin(t)
vfunc = np.vectorize(squarer)
ys = vfunc(xs)
model= Sequential()
model.add(Dense(units=256, input_shape=(1,), activation="tanh"))
model.add(Dense(units=256, activation="tanh"))
..a number of layers here
model.add(Dense(units=256, activation="tanh"))
model.add(Dense(units=1))
model.compile(optimizer="sgd", loss="mse")
model.fit(xs, ys, epochs=500, verbose=0)
I then generate some test data, which overlays my learning data, but also introduces some new data
test_xs = np.arange(-15, 45, 0.01)
test_ys = model.predict(test_xs)
plt.plot(xs, ys)
plt.plot(test_xs, test_ys)
Predicted data and learning data looks as follows. The more layers I add, the more curves network is able to learn, but the training process increases.
Is there a way to make it predict sin for any number of curves? Preferably with a small number of layers.
With a fully connected network I guess you won't be able to get arbitrarily long sequences, but with an RNN it looks like people have achieved this. A google search will pop up many such efforts, I found this one quickly: http://goelhardik.github.io/2016/05/25/lstm-sine-wave/
An RNN learns a sequence based on a history of inputs, so it's designed to pick up these kinds of patterns.
I suspect the limitation you observed is akin to performing a polynomial fit. If you increase the degree of polynomial you can better fit a function like this, but a polynomial can only represent a fixed number of inflection points depending on the degree you choose. Your observation here appears the same. As you increase layers you add more non-linear transitions. However, you are limited by a fixed number of layers you chose as the architecture in a fully connected network.
An RNN does not work on the same principals because it maintains a state and can make use of the state being passed forward in the sequence to learn the pattern of a single period of the sine wave and then repeat that pattern based on the state information.

How to combine various distance functions into one given the following dataset?

I have a few distance functions which return distance between two images , I want to combine these distance into a single distance, using weighted scoring e.g. ax1+bx2+cx3+dx4 etc i want to learn these weights automatically such that my test error is minimised.
For this purpose i have a labeled dataset which has various triplets of images such that (a,b,c) , a has less distance to b than it has to c.
i.e. d(a,b)<d(a,c)
I want to learn such weights so that this ordering of triplets can be as accurate as possible.(i.e. the weighted linear score given is less for a&b and more for a&c).
What sort of machine learning algorithm can be used for the task,and how the desired task can be achieved?
Hopefully I understand your question correctly, but it seems that this could be solved more easily with constrained optimization directly, rather than classical machine learning (the algorithms of which are often implemented via constrained optimization, see e.g. SVMs).
As an example, a possible objective function could be:
argmin_{w} || e ||_2 + lambda || w ||_2
where w is your weight vector (Oh god why is there no latex here), e is the vector of errors (one component per training triplet), lambda is some tunable regularizer constant (could be zero), and your constraints could be:
max{d(I_p,I_r)-d(I_p,I_q),0} <= e_j for jth (p,q,r) in T s.t. d(I_p,I_r) <= d(I_p,I_q)
for the jth constraint, where I_i is image i, T is the training set, and
d(u,v) = sum_{w_i in w} w_i * d_i(u,v)
with d_i being your ith distance function.
Notice that e is measuring how far your chosen weights are from satisfying all the chosen triplets in the training set. If the weights preserve ordering of label j, then d(I_p,I_r)-d(I_p,I_q) < 0 and so e_j = 0. If they don't, then e_j will measure the amount of violation of training label j. Solving the optimization problem would give the best w; i.e. the one with the lowest error.
If you're not familiar with linear/quadratic programming, convex optimization, etc... then start googling :) Many libraries exist for this type of thing.
On the other hand, if you would prefer a machine learning approach, you may be able to adapt some metric learning approaches to your problem.

Translating a TensorFlow LSTM into synapticjs

I'm working on implementing an interface between a TensorFlow basic LSTM that's already been trained and a javascript version that can be run in the browser. The problem is that in all of the literature that I've read LSTMs are modeled as mini-networks (using only connections, nodes and gates) and TensorFlow seems to have a lot more going on.
The two questions that I have are:
Can the TensorFlow model be easily translated into a more conventional neural network structure?
Is there a practical way to map the trainable variables that TensorFlow gives you to this structure?
I can get the 'trainable variables' out of TensorFlow, the issue is that they appear to only have one value for bias per LSTM node, where most of the models I've seen would include several biases for the memory cell, the inputs and the output.
Internally, the LSTMCell class stores the LSTM weights as a one big matrix instead of 8 smaller ones for efficiency purposes. It is quite easy to divide it horizontally and vertically to get to the more conventional representation. However, it might be easier and more efficient if your library does the similar optimization.
Here is the relevant piece of code of the BasicLSTMCell:
concat = linear([inputs, h], 4 * self._num_units, True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(1, 4, concat)
The linear function does the matrix multiplication to transform the concatenated input and the previous h state into 4 matrices of [batch_size, self._num_units] shape. The linear transformation uses a single matrix and bias variables that you're referring to in the question. The result is then split into different gates used by the LSTM transformation.
If you'd like to explicitly get the transformations for each gate, you can split that matrix and bias into 4 blocks. It is also quite easy to implement it from scratch using 4 or 8 linear transformations.

Resources