Cleaning up running FireDAC TTasks when closing application - delphi

I have a program (in Delphi 10.3) that allows the user to configure FireDAC database access at run time using the standard dialog as provided by the libraries (as listed in FireDAC help)
TfrmFDGUIxFormsConnEdit.Execute(DBConnection, '')
If the user exits shortly after doing this the program crashes with exceptions in TFDPhysMSSQLDriver.GetServers. This is because that function launches a TTask to browse all the available MSSQL servers which takes quite sometime to complete and generates protection errors as soon as it tries to process any "progress" it has made after the rest of the application has shutdown. Since this occurs in the FireDAC library I can't access the ITask handle for the task to wait for it and there doesn't seem to be any obvious way to wait for all outstanding TTasks to complete.
Does anyone know the approved method for either waiting for this task or all tasks to finish or what else I can do to "make safe" before exiting?

Related

Give Service more time to shut down

From our Advanced Installer setup, we install/upgrade a service that needs up to a minute to shut down. We cannot decrease the time it needs, and it will be shut down after a minute.
If AI tries to stop that service, it comes up with an error message after less than a minute ("The setup was unable to automatically close all requested applications. Please ensure that the applications holding files in use are closed before continuing with the installation").
I have not found an option in Advanced Installer Professional to change the timeout of the wait.
Is this possible?
I don't think this is possible. You can try to use a custom action to stop the service. That means you could write your own code to trigger a service stop operation and wait for a minute. This code can be executed as a custom action.
To make sure the described error message is not thrown you should execute your custom action before "Paths Resolution" action.

DDE and application initialisation time

Our application is DDE enabled. It acts as a server. It has its own file type, and offers an 'Open' command.
When launching application from a right-click on a saved file (ie reading HKEY_CLASSES_ROOT-----\shell etc) we sometimes get "there was a problem sending the command to the program". Especially win10.
On problem PCs we test a VBA script that triggers our exe, waits a second, and then sends DDE commands. This works well.
We conclude we need a pause, or to increase timeout on the DDE conversation.
Can this be done?
Is there a globally effective registry setting?
Any ideas?
No, you cannot pause or increase the DDE timeout.
Instead, you should look at possible problems with your application.
It is likely that your program is starting to pump messages before your DDE server is up and running. As soon as you start handling messages, Windows assumes your DDE server is running. So, it sends you the message, but your server is not up to receive it yet. Make sure that no thread in the program is handling Windows messages before the DDE server is setup.

Auto update a service

I have written several services in Delphi now, but I want to add the facility of auto updating the service either from a LAN unc path or from a http server. I have been pondering this and I am interested to hear peoples ideas. I can create a thread that will check for the update periodically, but how do I go about stopping the service uninstalling and installing automatically. My initial thoughts where to write a console app to do this and start it using create process, then let the service stop and the console app do the work, starting the new version of the service before it exits. Is this a good stratergy or shoul I consider something else. Thanks in advance
I do as you suggest. A thread checks occasionally for an update. If it is present, it downloads it and puts it into an appropriate place. It then verifies that it is wholesome (don't want it to be broken!). Finally, the thread then launches another app with parameters to tell it what to do, specifically, the name of the service, the location of the file to replace, and the file to replace it with. Then the service just waits.
When the updater app starts, it pauses a moment to make sure that the service is all stable, and then it uses the service control API to stop the service. It then monitors it until it is gone. Finally, it pauses a little to ensure that Windows has really finished with the file. Then it starts the process of renaming the old file to move it out of the way (if still in use, it retries a few times), and then copying the new file into place. And finally, it starts the service up again. Then the updater quits.
This has worked quite reliably for my services, and also standalone apps too (with different parameters for the updater app to know which mode). And if you are careful, you can update the updater using the exact same system, which is nice to watch.
I would have the service be a shell that only updates another executable or DLL file where the real code is at.
Have some communication method between the shell and the child process to force a shutdown and then have the shell perform the upgrade and relaunch the child.
As a side note, this makes debugging the service much easier as well as you'll be able to run the child process directly without having to worry about the extra efforts required to debug windows services.
your idea seems very good to me, however take this into consideration aswell:
- add module(the main core) to the service that will be unloaded and will load the updated module(*.dll file) when an update is available -- in this time the service should put the "tasks" in a queue or something...
additionally you can use plugins and/or scripts like Pascal script or DWScript
Last versions of Windows (I think since windows 10) does not allow a service to start other programs. So you will need an other program to run the update. It could be an other service.
Windows Services cannot start additional applications because they are
not running in the context of any particular user. Unlike regular
Windows applications, services are now run in an isolated session and
are prohibited from interacting with a user or the desktop.

BDE, Delphi, ODBC, SQL Native Client & Dead lock

We have some Delphi code that uses the BDE to Access SQL Server 2008 through the SQL Server Native Client ODBC driver (2005 version). Our issue is that we're experiencing some deadlock issues in a loop doing inserts to multiple tables.
The whole loop is done within a [TDatabase].StartTransaction. Looking at the SQL Server Profiler we clearly see that at one point during the loop the SPID (Session ID?) change, and then we naturally end up with a deadlock. (Both SPID doing inserts to the same table)
It seems like the BDE at some point does a second connection to the DB...
(Although I would love to skip the BDE, it's currently not possible. )
Anyone with experiences to share?
In case your app is multithreaded: BDE is not threadsafe. You have to use a separate BDE session (explicitly created instance of TSession) for each thread; the global Session created automatically for the main thread is not sufficient. Also, all database access components (TDatabase, TQuery, etc.) can only be used in the context of the thread where their corresponding instance of TSession has been created.
Verify in the ODBC installation if SQL Server driver is configured to do connection pooling.
Appear that Native Client installation activates it for default... (At least, mine installation had connection pooling active and I don't activated it).
This probably comes too late for the asker, but maybe it helps others.
Everytime there is a cursor that doesn't get closed, the BDE/ODBC combo will establish a new connection for successive querys. The "spid change" is probably the result of a non-closed cursor.
To solve this problem you have to find the BDE-component that caused this stil-opened cursor. Then you call a method that will eventually close the cursor (TTable.Close, TTable.Last ...).
After that the "spid change" should be gone and therefore the deadlock.
Some tips to find that component:
During the lock, execute the following statement (for example using Management Studio):
EXEC sp_who2.
Look in column BlkBy. The blocked connection has a number in it.
This number is the spid (Server Process ID) of the blocking connection.
Then you execute DBCC INPUTBUFFER(spid).
In column EventInfo you will find the sql-statement that has been issued by your programm.
With that information you should be able to find the BDE-component that causes your trouble.

windows service vs scheduled task

What are the cons and pros of windows services vs scheduled tasks for running a program repeatedly (e.g. every two minutes)?
Update:
Nearly four years after my original answer and this answer is very out of date. Since TopShelf came along Windows Services development got easy. Now you just need to figure out how to support failover...
Original Answer:
I'm really not a fan of Windows Scheduler. The user's password must be provided as #moodforall points out above, which is fun when someone changes that user's password.
The other major annoyance with Windows Scheduler is that it runs interactively and not as a background process. When 15 MS-DOS windows pop up every 20 minutes during an RDP session, you'll kick yourself that didn't install them as Windows Services instead.
Whatever you choose I certainly recommend you separate out your processing code into a different component from the console app or Windows Service. Then you have the choice, either to call the worker process from a console application and hook it into Windows Scheduler, or use a Windows Service.
You'll find that scheduling a Windows Service isn't fun. A fairly common scenario is that you have a long running process that you want to run periodically. But, if you are processing a queue, then you really don't want two instances of the same worker processing the same queue. So you need to manage the timer, to make sure if your long running process has run longer than the assigned timer interval, it doesn't kick off again until the existing process has finished.
After you have written all of that, you think, why didn't I just use Thread.Sleep? That allows me to let the current thread keep running until it has finished and then the pause interval kicks in, thread goes to sleep and kicks off again after the required time. Neat!
Then you then read all the advice on the internet with lots of experts telling you how it is really bad programming practice:
http://msmvps.com/blogs/peterritchie/archive/2007/04/26/thread-sleep-is-a-sign-of-a-poorly-designed-program.aspx
So you'll scratch your head and think to yourself, WTF, Undo Pending Checkouts -> Yes, I'm sure -> Undo all today's work..... damn, damn, damn....
However, I do like this pattern, even if everyone thinks it is crap:
OnStart method for the single-thread approach.
protected override void OnStart (string args) {
// Create worker thread; this will invoke the WorkerFunction
// when we start it.
// Since we use a separate worker thread, the main service
// thread will return quickly, telling Windows that service has started
ThreadStart st = new ThreadStart(WorkerFunction);
workerThread = new Thread(st);
// set flag to indicate worker thread is active
serviceStarted = true;
// start the thread
workerThread.Start();
}
The code instantiates a separate thread and attaches our worker
function to it. Then it starts the thread and lets the OnStart event
complete, so that Windows doesn't think the service is hung.
Worker method for the single-thread approach.
/// <summary>
/// This function will do all the work
/// Once it is done with its tasks, it will be suspended for some time;
/// it will continue to repeat this until the service is stopped
/// </summary>
private void WorkerFunction() {
// start an endless loop; loop will abort only when "serviceStarted"
// flag = false
while (serviceStarted) {
// do something
// exception handling omitted here for simplicity
EventLog.WriteEntry("Service working",
System.Diagnostics.EventLogEntryType.Information);
// yield
if (serviceStarted) {
Thread.Sleep(new TimeSpan(0, interval, 0));
}
}
// time to end the thread
Thread.CurrentThread.Abort();
}
OnStop method for the single-thread approach.
protected override void OnStop() {
// flag to tell the worker process to stop
serviceStarted = false;
// give it a little time to finish any pending work
workerThread.Join(new TimeSpan(0,2,0));
}
Source: http://tutorials.csharp-online.net/Creating_a_.NET_Windows_Service%E2%80%94Alternative_1%3a_Use_a_Separate_Thread (Dead Link)
I've been running lots of Windows Services like this for years and it works for me. I still haven't seen a recommended pattern that people agree on. Just do what works for you.
Some misinformation here. Windows Scheduler is perfectly capable of running tasks in the background without windows popping up and with no password required. Run it under the NT AUTHORITY\SYSTEM account. Use this schtasks switch:
/ru SYSTEM
But yes, for accessing network resources, the best practice is a service account with a separate non-expiring password policy.
EDIT
Depending on your OS and the requirements of the task itself, you may be able to use accounts less privileged than Localsystem with the /ru option.
From the fine manual,
/RU username
A value that specifies the user context under which the task runs.
For the system account, valid values are "", "NT AUTHORITY\SYSTEM", or "SYSTEM".
For Task Scheduler 2.0 tasks, "NT AUTHORITY\LOCALSERVICE", and
"NT AUTHORITY\NETWORKSERVICE" are also valid values.
Task Scheduler 2.0 is available from Vista and Server 2008.
In XP and Server 2003, system is the only option.
In .NET development, I normally start off by developing a Console Application, which will run will all logging output to the console window. However, this is only a Console Application when it is run with the command argument /console. When it is run without this parameter, it acts as a Windows Service, which will stay running on my own custom coded scheduled timer.
Windows Services, I my mind, are normally used to manage other applications, rather than be a long running application. OR .. they are continuously-running heavyweight applications like SQL Server, BizTalk, RPC Connections, IIS (even though IIS technically offloads work to other processes).
Personally, I favour scheduled tasks over Window Services for repititive maintenance tasks and applications such as file copying/synchronisations, bulk email sending, deletion or archiving of files, data correction (when other workarounds are not available).
For one project I have been involved in the development of 8 or 9 Windows Services, but these sit around in memory, idle, eating 20MB or more memory per instance. Scheduled tasks will do their business, and release the memory immediately.
What's the overhead of starting and quitting the app? Every two minutes is pretty often. A service would probably let the system run more smoothly than executing your application so frequently.
Both solutions can run the program when user isn't logged in, so no difference there. Writing a service is somewhat more involved than a regular desktop app, though - you may need a separate GUI client that will communicate with the service app via TCP/IP, named pipes, etc.
From a user's POV, I wonder which is easier to control. Both services and scheduled tasks are pretty much out of reach for most non-technical users, i.e. they won't even realize they exist and can be configured / stopped / rescheduled and so on.
The word 'serv'ice shares something in common with 'serv'er. It is expected to always be running, and 'serv'e. A task is a task.
Role play. If I'm another operating system, application, or device and I call a service, I expect it to be running and I expect a response. If I (os, app, dev) just need to execute an isolated task, then I will execute a task, but if I expect to communicate, possibly two way communication, I want a service. This has to do with the most effective way for two things to communicate, or a single thing that wants to execute a single task.
Then there's the scheduling aspect. If you want something to run at a specific time, schedule. If you don't know when you're going to need it, or need it "on the fly", service.
My response is more philosophical in nature because this is very similar to how humans interact and work with another. The more we understand the art of communication, and "entities" understand their role, the easier this decision becomes.
All philosophy aside, when you are "rapidly prototyping", as my IT Dept often does, you do whatever you have to in order to make ends meet. Once the prototyping and proof of concept stuff is out of the way, usually in the early planning and discovering, you have to decide what's more reliable for long term sustainability.
OK, so in conclusion, it's highly dependent on a lot of factors, but hopefully this has provided insight instead of confusion.
A Windows service doesn't need to have anyone logged in, and Windows has facilities for stopping, starting, and logging the service results.
A scheduled task doesn't require you to learn how to write a Windows service.
It's easier to set up and lock down windows services with the correct permissions.
Services are more "visible" meaning that everyone (ie: techs) knows where to look.
This is an old question but I will like to share what I have faced.
Recently I was given a requirement to capture the screenshot of a radar (from a Meteorological website) and save it in the server every 10 minutes.
This required me to use WebBrowser.
I usually make windows services so I decided to make this one service too but it would keep crashing.
This is what I saw in Event Viewer
Faulting module path: C:\Windows\system32\MSHTML.dll
Since the task was urgent and I had very less time to research and experiment, I decided to use a simple console application and triggered it as a task and it executed smoothly.
I really liked the article by Jon Galloway recommended in accepted answer by Mark Ransom.
Recently passwords on the servers were changed without acknowledging me and all the services failed to execute since they could not logon.
So ppl claiming in the article comments that this is a problem. I think windows services can face same problem (Pls. correct me if I am wrong, I am jus a newbie)
Also the thing mentioned, if using task scheduler windows pop up or the console window pops up.
I have never faced that. It may pop up but it is at least very instantaneous.
Why not provide both?
In the past I've put the 'core' bits in a library and wrapped a call to Whatever.GoGoGo() in both a service as well as a console app.
With something you're firing off every two minutes the odds are decent it's not doing much (e.g. just a "ping" type function). The wrappers shouldn't have to contain much more than a single method call and some logging.
Generally, the core message is and should be that the code itself must be executable from each and every "trigger/client". So it should not be rocket science to switch from one to the other approach.
In the past we used more or less always Windows Services but since also more and more of our customers switch to Azure step by step and the swap from a Console App (deployed as a Scheduled Task) to a WebJob in Azure is much easier than from a Windows Service, we focus on Scheduled Tasks for now. If we run into limitations, we just ramp up the Windows Service project and call the same logic from there (as long as customers are working OnPrem..) :)
BR,
y
Windows services want more patience until it's done.
It has a bit hard debug and install. It's faceless.
If you need a task which must be done in every second, minute or hour,
you should choice Windows Service.
Scheduled Task is quickly developed and has a face.
If you need a daily or weekly task, you can use Scheduled Task.

Resources