using a string in a math equation in Dart - dart

I store various formulas in Postgres and I want to use those formulas in my code. It would look something like this:
var amount = 100;
var formula = '5/105'; // normally something I would fetch from Postgres
var total = amount * formula; // should return 4.76
Is there a way to evaluate the string in this manner?

As far as I'm aware, there isn't a formula solver package developed for Dart yet. (If one exists or gets created after this post, we can edit it into the answer.)
EDIT: Mattia in the comments points out the math_expressions package, which looks pretty robust and easy to use.
There is a way to execute arbitrary Dart code as a string, but it has several problems. A] It's very roundabout and convoluted; B] it becomes a massive security issue; and C] it only works if the Dart is compiled in JIT mode (so in Flutter this means it will only work in debug builds, not release builds).
So the answer is that unfortunately, you will have to implement it yourself. The good news is that, for simple 4-function arithmetic, this is pretty straight-forward, and you can follow a tutorial on writing a calculator app like this one to see how it's done.
Of course, if all your formulas only contain two terms with an operator between them like in your example snippet, it becomes even easier. You can do the whole thing in just a few lines of code:
void main() {
final amount = 100;
final formula = '5/105';
final pattern = RegExp(r'(\d+)([\/+*-])(\d+)');
final match = pattern.firstMatch(formula);
final value = process(num.parse(match[1]), match[2], num.parse(match[3]));
final total = amount * value;
print(total); // Prints: 4.761904761904762
}
num process(num a, String operator, num b) {
switch (operator) {
case '+': return a + b;
case '-': return a - b;
case '*': return a * b;
case '/': return a / b;
}
throw ArgumentError(operator);
}

There are a few packages that can be used to accomplish this:
pub.dev/packages/function_tree
pub.dev/packages/math_expressions
pub.dev/packages/expressions
I used function_tree as follows:
double amount = 100.55;
String formula = '5/105*.5'; // From Postgres
final tax = amount * formula.interpret();
I haven't tried it, but using math_expressions it should look like this:
double amount = 100.55;
String formula = '5/105*.5'; // From Postgres
Parser p = Parser();
// Context is used to evaluate variables, can be empty in this case.
ContextModel cm = ContextModel();
Expression exp = p.parse(formula) * p.parse(amount.toString());
// or..
//Expression exp = p.parse(formula) * Number(amount);
double result = exp.evaluate(EvaluationType.REAL, cm);
// Result: 2.394047619047619
print('Result: ${result}');
Thanks to fkleon for the math_expressions help.

Related

Destructured iteration over variadic arguments like a tuple sequence in D

Let's say I want to process a variadic function which alternately gets passed start and end values of 1 or more intervals and it should return a range of random values in those intervals. You can imagine the input to be a flattened sequence of tuples, all tuple elements spread over one single range.
import std.meta; //variadic template predicates
import std.traits : isFloatingPoint;
import std.range;
auto randomIntervals(T = U[0], U...)(U intervals)
if (U.length/2 > 0 && isFloatingPoint!T && NoDuplicates!U.length == 1) {
import std.random : uniform01;
T[U.length/2] randomValues;
// split and iterate over subranges of size 2
foreach(i, T start, T end; intervals.chunks(2)) { //= intervals.slide(2,2)
randomValues[i] = uniform01 * (end - start) + start,
}
return randomValues.dup;
}
The example is not important, I only use it for explanation. The chunk size could be any finite positive size_t, not only 2 and changing the chunk size should only require changing the number of loop-variables in the foreach loop.
In this form above it will not compile since it would only expect one argument (a range) to the foreach loop. What I would like is something which rather automatically uses or infers a sliding-window as a tuple, derived from the number of given loop-variables, and fills the additional variables with next elements of the range/array + allows for an additional index, optionally. According to the documentation a range of tuples allows destructuring of the tuple elements in place into foreach-loop-variables so the first thing, I thought about, is turning a range into a sequence of tuples but didn't find a convenience function for this.
Is there a simple way to loop over destructured subranges (with such a simplicity as shown in my example code) together with the index? Or is there a (standard library) function which does this job of splitting a range into enumerated tuples of equal size? How to easily turn the range of subranges into a range of tuples?
Is it possible with std.algorithm.iteration.map in this case (EDIT: with a simple function argument to map and without accessing tuple elements)?
EDIT: I want to ignore the last chunk which doesn't fit into the entire tuple. It just is not iterated over.
EDIT: It's not, that I couldn't program this myself, I only hope for a simple notation because this use case of looping over multiple elements is quite useful. If there is something like a "spread" or "rest" operator in D like in JavaScript, please let me know!
Thank you.
(Added as a separate answer because it's significantly different from my previous answer, and wouldn't fit in a comment)
After reading your comments and the discussion on the answers thus far, it seems to me what you seek is something like the below staticChunks function:
unittest {
import std.range : enumerate;
size_t index = 0;
foreach (i, a, b, c; [1,2,3,1,2,3].staticChunks!3.enumerate) {
assert(a == 1);
assert(b == 2);
assert(c == 3);
assert(i == index);
++index;
}
}
import std.range : isInputRange;
auto staticChunks(size_t n, R)(R r) if (isInputRange!R) {
import std.range : chunks;
import std.algorithm : map, filter;
return r.chunks(n).filter!(a => a.length == n).map!(a => a.tuplify!n);
}
auto tuplify(size_t n, R)(R r) if (isInputRange!R) {
import std.meta : Repeat;
import std.range : ElementType;
import std.typecons : Tuple;
import std.array : front, popFront, empty;
Tuple!(Repeat!(n, ElementType!R)) result;
static foreach (i; 0..n) {
result[i] = r.front;
r.popFront();
}
assert(r.empty);
return result;
}
Note that this also deals with the last chunk being a different size, if only by silently throwing it away. If this behavior is undesirable, remove the filter, and deal with it inside tuplify (or don't, and watch the exceptions roll in).
chunks and slide return Ranges, not tuples. Their last element can contain less than the specified size, whereas tuples have a fixed compile time size.
If you need destructuring, you have to implement your own chunks/slide that return tuples. To explicitly add an index to the tuple, use enumerate. Here is an example:
import std.typecons, std.stdio, std.range;
Tuple!(int, int)[] pairs(){
return [
tuple(1, 3),
tuple(2, 4),
tuple(3, 5)
];
}
void main(){
foreach(size_t i, int start, int end; pairs.enumerate){
writeln(i, ' ', start, ' ', end);
}
}
Edit:
As BioTronic said using map is also possible:
foreach(i, start, end; intervals
.chunks(2)
.map!(a => tuple(a[0], a[1]))
.enumerate){
Your question has me a little confused, so I'm sorry if I've misunderstood. What you're basically asking is if foreach(a, b; [1,2,3,4].chunks(2)) could work, right?
The simple solution here is to, as you say, map from chunk to tuple:
import std.typecons : tuple;
import std.algorithm : map;
import std.range : chunks;
import std.stdio : writeln;
unittest {
pragma(msg, typeof([1,2].chunks(2).front));
foreach(a, b; [1,2,3,4].chunks(2).map!(a => tuple(a[0], a[1]))) {
writeln(a, ", ", b);
}
}
At the same time with BioTronic, I tried to code some own solution to this problem (tested on DMD). My solution works for slices (BUT NOT fixed-size arrays) and avoids a call to filter:
import std.range : chunks, isInputRange, enumerate;
import std.range : isRandomAccessRange; //changed from "hasSlicing" to "isRandomAccessRange" thanks to BioTronics
import std.traits : isIterable;
/** turns chunks into tuples */
template byTuples(size_t N, M)
if (isRandomAccessRange!M) { //EDITED
import std.meta : Repeat;
import std.typecons : Tuple;
import std.traits : ForeachType;
alias VariableGroup = Tuple!(Repeat!(N, ForeachType!M)); //Tuple of N repititions of M's Foreach-iterated Type
/** turns N consecutive array elements into a Variable Group */
auto toTuple (Chunk)(Chunk subArray) #nogc #safe pure nothrow
if (isInputRange!Chunk) { //Chunk must be indexable
VariableGroup nextLoopVariables; //fill the tuple with static foreach loop
static foreach(index; 0 .. N) {
static if ( isRandomAccessRange!Chunk ) { // add cases for other ranges here
nextLoopVariables[index] = subArray[index];
} else {
nextLoopVariables[index] = subArray.popFront();
}
}
return nextLoopVariables;
}
/** returns a range of VariableGroups */
auto byTuples(M array) #safe pure nothrow {
import std.algorithm.iteration : map;
static if(!isInputRange!M) {
static assert(0, "Cannot call map() on fixed-size array.");
// auto varGroups = array[].chunks(N); //fixed-size arrays aren't slices by default and cannot be treated like ranges
//WARNING! invoking "map" on a chunk range from fixed-size array will fail and access wrong memory with no warning or exception despite #safe!
} else {
auto varGroups = array.chunks(N);
}
//remove last group if incomplete
if (varGroups.back.length < N) varGroups.popBack();
//NOTE! I don't know why but `map!toTuple` DOES NOT COMPILE! And will cause a template compilation mess.
return varGroups.map!(chunk => toTuple(chunk)); //don't know if it uses GC
}
}
void main() {
testArrayToTuples([1, 3, 2, 4, 5, 7, 9]);
}
// Order of template parameters is relevant.
// You must define parameters implicitly at first to be associated with a template specialization
void testArrayToTuples(U : V[], V)(U arr) {
double[] randomNumbers = new double[arr.length / 2];
// generate random numbers
foreach(i, double x, double y; byTuples!2(arr).enumerate ) { //cannot use UFCS with "byTuples"
import std.random : uniform01;
randomNumbers[i] = (uniform01 * (y - x) + x);
}
foreach(n; randomNumbers) { //'n' apparently works despite shadowing a template parameter
import std.stdio : writeln;
writeln(n);
}
}
Using elementwise operations with the slice operator would not work here because uniform01 in uniform01 * (ends[] - starts[]) + starts[] would only be called once and not multiple times.
EDIT: I also tested some online compilers for D for this code and it's weird that they behave differently for the same code. For compilation of D I can recommend
https://run.dlang.io/ (I would be very surprised if this one wouldn't work)
https://www.mycompiler.io/new/d (but a bit slow)
https://ideone.com (it works but it makes your code public! Don't use with protected code.)
but those didn't work for me:
https://tio.run/#d2 (didn't finish compilation in one case, otherwise wrong results on execution even when using dynamic array for the test)
https://www.tutorialspoint.com/compile_d_online.php (doesn't compile the static foreach)

Search for sequence in Uint8List

Is there a fast (native) method to search for a sequence in a Uint8List?
///
/// Return index of first occurrence of seq in list
///
int indexOfSeq(Uint8List list, Uint8List seq) {
...
}
EDIT: Changed List<int> into Uint8List
No. There is no built-in way to search for a sequence of elements in a list.
I am also not aware of any dart:ffi based implementations.
The simplest approach would be:
extension IndexOfElements<T> on List<T> {
int indexOfElements(List<T> elements, [int start = 0]) {
if (elements.isEmpty) return start;
var end = length - elements.length;
if (start > end) return -1;
var first = elements.first;
var pos = start;
while (true) {
pos = indexOf(first, pos);
if (pos < 0 || pos > end) return -1;
for (var i = 1; i < elements.length; i++) {
if (this[pos + i] != elements[i]) {
pos++;
continue;
}
}
return pos;
}
}
}
This has worst-case time complexity O(length*elements.length). There are several more algorithms with better worst-case complexity, but they also have larger constant factors and more expensive pre-computations (KMP, BMH). Unless you search for the same long list several times, or do so in a very, very long list, they're unlikely to be faster in practice (and they'd probably have an API where you compile the pattern first, then search with it.)
You could use dart:ffi to bind to memmem from string.h as you suggested.
We do the same with binding to malloc from stdlib.h in package:ffi (source).
final DynamicLibrary stdlib = Platform.isWindows
? DynamicLibrary.open('kernel32.dll')
: DynamicLibrary.process();
final PosixMalloc posixMalloc =
stdlib.lookupFunction<Pointer Function(IntPtr), Pointer Function(int)>('malloc');
Edit: as lrn pointed out, we cannot expose the inner data pointer of a Uint8List at the moment, because the GC might relocate it.
One could use dart_api.h and use the FFI to pass TypedData through the FFI trampoline as Dart_Handle and use Dart_TypedDataAcquireData from the dart_api.h to access the inner data pointer.
(If you want to use this in Flutter, we would need to expose Dart_TypedDataAcquireData and Dart_TypedDataReleaseData in dart_api_dl.h https://github.com/dart-lang/sdk/issues/40607 I've filed https://github.com/dart-lang/sdk/issues/44442 to track this.)
Alternatively, could address https://github.com/dart-lang/sdk/issues/36707 so that we could just expose the inner data pointer of a Uint8List directly in the FFI trampoline.

Why does this Rascal pattern matching code use so much memory and time?

I'm trying to write what I would think of as an extremely simple piece of code in Rascal: Testing if list A contains list B.
Starting out with some very basic code to create a list of strings
public list[str] makeStringList(int Start, int End)
{
return [ "some string with number <i>" | i <- [Start..End]];
}
public list[str] toTest = makeStringList(0, 200000);
My first try was 'inspired' by the sorting example in the tutor:
public void findClone(list[str] In, str S1, str S2, str S3, str S4, str S5, str S6)
{
switch(In)
{
case [*str head, str i1, str i2, str i3, str i4, str i5, str i6, *str tail]:
{
if(S1 == i1 && S2 == i2 && S3 == i3 && S4 == i4 && S5 == i5 && S6 == i6)
{
println("found duplicate\n\t<i1>\n\t<i2>\n\t<i3>\n\t<i4>\n\t<i5>\n\t<i6>");
}
fail;
}
default:
return;
}
}
Not very pretty, but I expected it to work. Unfortunately, the code runs for about 30 seconds before crashing with an "out of memory" error.
I then tried a better looking alternative:
public void findClone2(list[str] In, list[str] whatWeSearchFor)
{
for ([*str head, *str mid, *str end] := In)
if (mid == whatWeSearchFor)
println("gotcha");
}
with approximately the same result (seems to run a little longer before running out of memory)
Finally, I tried a 'good old' C-style approach with a for-loop
public void findClone3(list[str] In, list[str] whatWeSearchFor)
{
cloneLength = size(whatWeSearchFor);
inputLength = size(In);
if(inputLength < cloneLength) return [];
loopLength = inputLength - cloneLength + 1;
for(int i <- [0..loopLength])
{
isAClone = true;
for(int j <- [0..cloneLength])
{
if(In[i+j] != whatWeSearchFor[j])
isAClone = false;
}
if(isAClone) println("Found clone <whatWeSearchFor> on lines <i> through <i+cloneLength-1>");
}
}
To my surprise, this one works like a charm. No out of memory, and results in seconds.
I get that my first two attempts probably create a lot of temporary string objects that all have to be garbage collected, but I can't believe that the only solution that worked really is the best solution.
Any pointers would be greatly appreciated.
My relevant eclipse.ini settings are
-XX:MaxPermSize=512m
-Xms512m
-Xss64m
-Xmx1G
We'll need to look to see why this is happening. Note that, if you want to use pattern matching, this is maybe a better way to write it:
public void findClone(list[str] In, str S1, str S2, str S3, str S4, str S5, str S6) {
switch(In) {
case [*str head, S1, S2, S3, S4, S5, S6, *str tail]: {
println("found duplicate\n\t<S1>\n\t<S2>\n\t<S3>\n\t<S4>\n\t<S5>\n\t<S6>");
}
default:
return;
}
}
If you do this, you are taking advantage of Rascal's matcher to actually find the matching strings directly, versus your first example in which any string would match but then you needed to use a number of separate comparisons to see if the match represented the combination you were looking for. If I run this on 110145 through 110150 it takes a while but works and it doesn't seem to grow beyond the heap space you allocated to it.
Also, is there a reason you are using fail? Is this to continue searching?
It's an algorithmic issue like Mark Hills said. In Rascal some short code can still entail a lot of nested loops, almost implicitly. Basically every * splice operator on a fresh variable that you use on the pattern side in a list generates one level of loop nesting, except for the last one which is just the rest of the list.
In your code of findClone2 you are first generating all combinations of sublists and then filtering them using the if construct. So that's a correct algorithm, but probably slow. This is your code:
void findClone2(list[str] In, list[str] whatWeSearchFor)
{
for ([*str head, *str mid, *str end] := In)
if (mid == whatWeSearchFor)
println("gotcha");
}
You see how it has a nested loop over In, because it has two effective * operators in the pattern. The code runs therefore in O(n^2), where n is the length of In. I.e. it has quadratic runtime behaviour for the size of the In list. In is a big list so this matters.
In the following new code, we filter first while generating answers, using fewer lines of code:
public void findCloneLinear(list[str] In, list[str] whatWeSearchFor)
{
for ([*str head, *whatWeSearchFor, *str end] := In)
println("gotcha");
}
The second * operator does not generate a new loop because it is not fresh. It just "pastes" the given list values into the pattern. So now there is actually only one effective * which generates a loop which is the first on head. This one makes the algorithm loop over the list. The second * tests if the elements of whatWeSearchFor are all right there in the list after head (this is linear in the size of whatWeSearchFor and then the last *_ just completes the list allowing for more stuff to follow.
It's also nice to know where the clone is sometimes:
public void findCloneLinear(list[str] In, list[str] whatWeSearchFor)
{
for ([*head, *whatWeSearchFor, *_] := In)
println("gotcha at <size(head)>");
}
Rascal does not have an optimising compiler (yet) which might possibly internally transform your algorithms to equivalent optimised ones. So as a Rascal programmer you are still asked to know the effect of loops on your algorithms complexity and know that * is a very short notation for a loop.

Finding follow sets - infinite recursion

While finding follow sets, rules such as
A->aA can lead to infinite recursion. Is there any coding technique to avoid it?
Note that the above example is just an example, in practice such a recursion could happen indirectly as well.
Here is my sample C code for finding follow sets. The grammar is stored as an array of linked lists. Please tell me if the code is unclear at any point.
set findFollowSet(char nonTerminal[], Grammar G, hashTable2 h) //later assume that all first sets are already in the hashtable.
{
LINK temp1 = find2(h, nonTerminal);
set s= createEmptySet();
set temp = createEmptySet();
char lhs[80] = "\0";
int i;
//special case
if(temp1->numRightSideOf==0) //its not on right side of any grammar rule
return insert(s, "$");
for(i=0;i<temp1->numRightSideOf;i++)
{
link l = G.rules[temp1->rightSideOf[i]];
strcpy(lhs, l->symbol); //storing the lhs just in case the nonTerm appears on the rightmost end of the rule.
printf("!!!!! %s\n", lhs);
sleep(1);
//finding nonTerminal in G
while(l!=NULL)
{
if(strcmp(l->symbol, nonTerminal) == 0)
break;
l=l->next;
}
//found the nonTerminal in G
if(l->next!=NULL)
{
temp = findFirstSet(l->next, G, h);
temp = removeElement(temp, "EPSILON");
}
else //its on the rightmost end of the rule
temp = findFollowSet(lhs, G, h);
s = setUnion(s, temp); destroySet(temp);
}
return s;
}
FIRST and FOLLOW sets are defined recursively, so you need to find the recursive closure. What this mean in practice is that you don't find the FOLLOW set for a single non-terminal -- you find all the FOLLOW sets for all the terminals simultaneously, by starting with all sets empty and going over the grammar adding symbols to different sets, until no more symbols can be added to any set. So you end up with something like:
FOLLOW[*] = {}; // all follow sets start empty
done = false;
while (!done)
done = true;
for (R : each rule in the grammar)
A = RHS[R];
tmp = FOLLOW[A];
for (S : each symbol in LHS[R] from right to left)
if (S is terminal)
tmp = {S};
else
if (!(FOLLOW[S] contains tmp))
done = false
FOLLOW[S] |= tmp
if (epsilon in FIRST[S])
tmp |= FIRST[S] - epsilon
else
tmp = FIRST[S]
Ok I got the answer but its inefficient.
So if anyone wants to suggest some more efficient answer, please feel welcomed.
Just store the recursion stack explicitly and at each recursive call, check if the entry already exists in the stack.
Mind you, you need to check the entire stack not just the top of it.

Any max and argmax?

I want to use max and argmax on collections. I saw an issue for max but not argmax and it looks different to what I had in mind. Everything here is also applicable to min and argmin. Example of code with equivalent behaviour (minus error handling):
import 'dart:html';
import 'dart:math' as math;
void main() {
final nums = [3, 1, 2];
final animalNames = ['cat', 'turtle', 'sheep'];
final highest = nums.reduce(nums[0], (stored, curr) => math.max(stored, curr));
final longest = animalNames.reduce(animalNames[0], longerString);
print('highest: $highest');
print('longest: $longest');
}
String longerString(final String first, final String second) {
if (first.length < second.length) {
return second;
} else {
return first;
}
}
I've been searching the API but haven't find anything like:
final highest = nums.max;
final longest = animalNames.argmax((name) => name.length);
Similar to Ruby max and max_by.
Questions:
Are there API calls like these already (under some name I haven't checked)?
Are there any plans to make them?
Should I raise an issue?
I don't think there is, but here's a pretty trivial implementation based on your example:
animalNames.reduce("", (prev, cur) => prev.length > cur.length ? prev : cur);
This is faster than sorting if you only want to look it up once, but this can get a little unwieldy if you have complex logic for your argmax.
In one of the Dartisans videos, one of the devs mentioned how they're trying to make a lot of the common patterns easy, so I think something like this would have a pretty good chance of making it into the standard library if you make a good enough case for it.

Resources