Related
This question already has answers here:
How to efficiently read thousand of lines from STDIN in Erlang?
(2 answers)
Closed 2 years ago.
A common programming problem which I've done in Python, Java, etc. with no problem. The following in Erlang (which I'm just learning) runs very slowly (~44s user time for 10^5 operations), and I am lost as to why.
As written on HackerRank, the program takes one line from stdin with an integer representing the number of operations that follow. Each subsequent line should be 1 X (enqueue X), 2 (dequeue and discard), or 3 (peek and print the next value on the queue).
Am I using lists:reverse/1 incorrectly?
-module(two_stacks).
%% API exports
-export([main/1]).
enqueue(Num, F, B) ->
{[Num | F], B}.
dequeue(F, []) ->
[_|B] = lists:reverse(F),
{[], B};
dequeue(F, [_|B]) ->
{F, B}.
peek(F, []) ->
[H|T] = lists:reverse(F),
io:format(H),
{[], [H|T]};
peek(F, [H|T]) ->
io:format(H),
{F, [H|T]}.
dispatchOperation(_, {F, B}) ->
[Code|Line] = io:get_line(""),
case Code of
49 ->
[_|Num] = Line,
enqueue(Num, F, B);
50 -> dequeue(F, B);
51 -> peek(F, B)
end.
main(_) ->
{Count, _} = string:to_integer(io:get_line("")),
_ = lists:foldl(fun dispatchOperation/2, {[], []}, lists:seq(1, Count)),
erlang:halt(0).
https://www.hackerrank.com/challenges/queue-using-two-stacks/problem
Are you running an escript? If that's the case, you should add a -mode(compile). there, because otherwise it runs the script in interpreted mode.
Also, you can compare the times against using the queue module (which is implemented using two stacks)
The issue is with the way I'm parsing input. See 46493207 for discussion.
Since all the inputs are integers I was able to make use of the same technique used there. The completed code is:
-module(solution).
-export([main/0]).
enqueue(Num, F, B) ->
{[Num | F], B}.
dequeue(F, []) ->
[_|B] = lists:reverse(F),
{[], B};
dequeue(F, [_|B]) ->
{F, B}.
peek(F, []) ->
[H|T] = lists:reverse(F),
io:format("~B~n", [H]),
{[], [H|T]};
peek(F, [H|T]) ->
io:format("~B~n", [H]),
{F, [H|T]}.
run(_, {F, B}) ->
Line = io:get_line(""),
[X| Y] = binary:split(Line, [<<$\s>>, <<$\n>>], [global]),
Code = binary_to_integer(X),
case Code of
1 ->
Num = binary_to_integer(lists:nth(1, Y)),
enqueue(Num, F, B);
2 -> dequeue(F, B);
3 -> peek(F, B)
end.
main() ->
ok = io:setopts(standard_io, [binary]),
{Count, _} = string:to_integer(io:get_line("")),
_ = lists:foldl(fun run/2, {[], []}, lists:seq(1, Count)),
erlang:halt(0).
Im working on some erlang functions and im also not allowed to use library functions. I have to define a function that drops every other element from a list, starting with the first element.
I have worked on something similar before but i could use BIFs and now i am struggling.
For example, alternate([1,2,3,four,5,6]) is [2,four,6]. I am not sure how to implement it.
spec drop_word(string()) -> string().
drop_word([]) -> [];
drop_word([O|Op]) -> case wsp(O) of
true -> Op;
false -> drop_word(Op)
end.
alternate(List) ->
alternate(List, _Index=0).
alternate([_|T], Index) when Index rem 2 == 0 -> %even indexes
alternate(T, Index+1);
alternate([H|T], Index) when Index rem 2 == 1 -> %odd indexes
[H | alternate(T, Index+1)];
alternate([], _Index) ->
[].
In the shell:
12> a:alternate([1,2,3,four,5,6]).
[2,four,6]
13> a:alternate([1,2,3,four,5]).
[2,four]
But, that can be simplified to:
alternate(List) ->
evens(List).
evens([_|T]) ->
odds(T);
evens([]) -> [].
odds([H|T]) ->
[H | evens(T)];
odds([]) -> [].
In the shell:
6> a:alternate([1,2,3,four,5,6]).
[2,four,6]
7> a:alternate([1,2,3,four,5]).
[2,four]
Here's an accumulator version:
alternate(List) ->
evens(List, []).
evens([_|T], Acc) ->
odds(T, Acc);
evens([], Acc) ->
lists:reverse(Acc).
odds([H|T], Acc) ->
evens(T, [H|Acc]);
odds([], Acc) ->
lists:reverse(Acc).
In the shell:
20> a:alternate([1,2,3,four,5,6]).
[2,four,6]
21> a:alternate([1,2,3,four,5]).
[2,four]
Note that lists:reverse() is highly optimized, so you would never do List ++ [X] many times, which traverses the whole list every time you add an element to the end of the list. Rather, you should always choose to add an element to the head of a list, then call lists:reverse(). Oh yeah, no library functions...a reverse() function is easy to implement yourself, and although it won't be optimized like the erlang version, it will still be more efficient than doing List ++ [X] multiple times.
You can use two atoms drop and keep two match the alternating clauses of do_alternate. Details below in comments.
-module(so).
-export([alternate/1]).
% The exported function starts the actual function and tells it to match the `drop`
% clause. Kept elements of L will be collected in the third argument.
alternate(L) -> do_alternate(drop, L, []).
% The `drop` clause will call the `keep` clause and pass the tail T and the
% currently collected list Acc. The head H will be dropped.
do_alternate(drop, [_|T], Acc) -> do_alternate(keep, T, Acc);
% The `keep` clause will call the `drop` claues and pass the tail T and the
% currently collected list Acc with the head H prepented to it.
do_alternate(keep, [H|T], Acc) -> do_alternate(drop, T, Acc ++ [H]);
% If the arugment list is empty, return the accumulated list.
do_alternate(_, [], Acc) -> Acc.
Example usage:
> c(so).
{ok,so}
9> so:alternate([1,2,3,4,5,6]).
[2,4,6]
10> so:alternate([1,2,3,4,5,6,seven,eight,nine,ten,eleven]).
[2,4,6,eight,ten]
It seems that you want to drop any elements with position which is even. So you can do it like below:
-module(test).
-compile([export_all,debug_info]).
alternate(L) -> do_alternate(L, 0, length(L)).
do_alternate(_, L, L) -> [];
do_alternate([H|T], N, L) ->
case (N band 1) == 0 of
true -> do_alternate(T, N+1, L);
false -> [H] ++ do_alternate(T, N+1, L)
end.
Result in shell:
1> c(test).
test.erl:2: Warning: export_all flag enabled - all functions will be exported
{ok,test}
2> test:alternate([1,2,3,four,5,6]).
[2,four,6]
Moreover, if your List only has integer numbers, so you can use BIF like below:
3> lists:partition(fun(A) -> A rem 2 == 1 end, [1,2,3,4,5,6]).
{[1,3,5],[2,4,6]}
You could pattern match on the list, taking two elements at a time:
alternate([_Odd, Even | T]) ->
[Even] ++ alternate(T);
alternate([]) ->
[].
The specification doesn't say what happens if the list has an odd number of elements, so this function will just crash with a "function clause" error in that case. You could add a third clause to handle that - presumably dropping the last element would be a sensible thing to do:
alternate([_Last]) ->
[];
The title^ is kinda confusing but I will illustrate what I want to achieve:
I have:
[{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538077790705827">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538078530667847">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538077778390908">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5bad45b1e990057961313822">>,<<"1538082492283531">>
}]
I want to convert it to a list like this:
[
{<<"5b3f77502dfe0deeb8912b42">>,
[{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538077790705827">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538078530667847">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538077778390908">>}
]},
{<<"5bad45b1e990057961313822">>,
[{<<"5b71d7e458c37fa04a7ce768">>,<<"5bad45b1e990057961313822">>,<<"1538082492283531">>}
]}
]
List of tuples [{id, [<List>]}, {id2, [<List>]} ] where ids are the second item of the tuple of the original list
Example :
<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538077790705827">>
Erlang newbie here. I created a dict with the second members of the tuples as keys and lists of corresponding tuples as values, then used dict:fold to transform it into the expected output format.
-export([test/0, transform/1]).
transform([H|T]) ->
transform([H|T], dict:new()).
transform([], D) ->
lists:reverse(
dict:fold(fun (Key, Tuples, Acc) ->
lists:append(Acc,[{Key,Tuples}])
end,
[],
D));
transform([Tuple={_S1,S2,_S3}|T], D) ->
transform(T, dict:append_list(S2, [Tuple], D)).
test() ->
Input=[{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538077790705827">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538078530667847">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538077778390908">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5bad45b1e990057961313822">>,<<"1538082492283531">>}
],
Output=transform(Input),
case Output of
[
{<<"5b3f77502dfe0deeb8912b42">>,
[{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538077790705827">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538078530667847">>},
{<<"5b71d7e458c37fa04a7ce768">>,<<"5b3f77502dfe0deeb8912b42">>,<<"1538077778390908">>}
]},
{<<"5bad45b1e990057961313822">>,
[{<<"5b71d7e458c37fa04a7ce768">>,<<"5bad45b1e990057961313822">>,<<"1538082492283531">>}
]}
] -> ok;
_Else -> error
end.
I think I see what you're after... Please correct me if I'm wrong.
There are a number of ways to do this, it really just depends on what sort of data structure you're interested in using to check the presence of like-keys. I'll show you two fundamentally different ways to do this and a third hybrid method that has become recently available:
Indexed data types (in this case a map)
List operations with matching
Hybrid matching over map keys
Since you're new I'll use the first case to demonstrate two ways of writing it: explicit recursion and using an actual list function from the lists module.
Indexy Data Types
The first way we'll do this is to use a hash table (aka "dict", "map", "hash", "K/V", etc.) and explicitly recurse through the elements, checking for the presence of the key encountered and adding it if it is missing, or appending to the list of values it points to if it does. We'll use an Erlang map for this. At the end of the function we'll convert the utility map back to a list:
explicit_convert(List) ->
Map = explicit_convert(List, maps:new()),
maps:to_list(Map).
explicit_convert([H | T], A) ->
K = element(2, H),
NewA =
case maps:is_key(K, A) of
true ->
V = maps:get(K, A),
maps:put(K, [H | V], A);
false ->
maps:put(K, [H], A)
end,
explicit_convert(T, NewA);
explicit_convert([], A) ->
A.
There is nothing wrong with explicit recursion (it is particularly good if you're new, because every part of it is left in the open to be examined), but this is a "left fold" and we already have a library function that abstracts a little bit of the plumbing out. So we really only need to write a function that checks for the presence of an element, and adds the key or appends the value:
fun_convert(List) ->
Map = lists:foldl(fun convert/2, maps:new(), List),
maps:to_list(Map).
convert(H, A) ->
K = element(2, H),
case maps:is_key(K, A) of
true ->
V = maps:get(K, A),
maps:put(K, [H | V], A);
false ->
maps:put(K, [H], A)
end.
Listy Conversion
The other major way we could have done this is with listy matching. To do that you need to first guarantee that your elements are sorted on the element you want to use as a key so that you can use it as a sort of "working element" and match on it. The code should be pretty easy to understand once you stare at it for a bit (maybe write out how it will step through your list by hand on paper once if you're totally perplexed):
listy_convert(List) ->
[T = {_, K, _} | Rest] = lists:keysort(2, List),
listy_convert(Rest, {K, [T]}, []).
listy_convert([T = {_, K, _} | Rest], {K, Ts}, Acc) ->
listy_convert(Rest, {K, [T | Ts]}, Acc);
listy_convert([T = {_, K, _} | Rest], Done, Acc) ->
listy_convert(Rest, {K, [T]}, [Done | Acc]);
listy_convert([], Done, Acc) ->
[Done | Acc].
Note that we split the list immediately after sorting it. The reason is that we have "prime the pump", so to speak, on the first call we make to listy_convert/3. This also means that this function will crash if you pass it an empty list. You can solve that by adding a clause to listy_convert/1 that matches on the empty list [].
A Final Bit of Magic
With those firmly in mind... consider that we also have a bit of a hybrid option available in newer versions of Erlang due to the magical syntax available to maps. We can match (most values) on map keys inside of a case clause (though we can't unify on a key value provided by other arguments within a function head):
map_convert(List) ->
maps:to_list(map_convert(List, #{})).
map_convert([T = {_, K, _} | Rest], Acc) ->
case Acc of
#{K := Ts} -> map_convert(Rest, Acc#{K := [T | Ts]});
_ -> map_convert(Rest, Acc#{K => [T]})
end;
map_convert([], Acc) ->
Acc.
Here is a one-liner that would produce your expected result:
[{K, [E || {_, K2, _} = E <- List, K =:= K2]} || {_, K, _} <- lists:ukeysort(2, List)].
What’s going on here? Let’s do it step by step…
This is your original list
List = […],
lists:ukeysort/2 leaves just one element per key in the list
OnePerKey = lists:ukeysort(2, List),
We then extract the keys with the first list comprehension
Keys = [K || {_, K, _} <- OnePerKey],
With the second list comprehension, we find the elements with the key…
fun Filter(K, List) ->
[E || {_, K2, _} = E <- List, K =:= K2]
end
Keep in mind that we can’t just pattern-match with K in the generator (i.e. [E || {_, K, _} = E <- List]) because generators in LCs introduce new scope for the variables.
Finally, putting all together…
[{K, Filter(K, List)} || K <- Keys]
It really depends on your dataset. For lager data sets using maps is a bit more efficient.
-module(test).
-export([test/3, v1/2, v2/2, v3/2, transform/1, do/2]).
test(N, Keys, Size) ->
List = [{<<"5b71d7e458c37fa04a7ce768">>,rand:uniform(Keys),<<"1538077790705827">>} || I <- lists:seq(1,Size)],
V1 = timer:tc(test, v1, [N, List]),
V2 = timer:tc(test, v2, [N, List]),
V3 = timer:tc(test, v3, [N, List]),
io:format("V1 took: ~p, V2 took: ~p V3 took: ~p ~n", [V1, V2, V3]).
v1(N, List) when N > 0 ->
[{K, [E || {_, K2, _} = E <- List, K =:= K2]} || {_, K, _} <- lists:ukeysort(2, List)],
v1(N-1, List);
v1(_,_) -> ok.
v2(N, List) when N > 0 ->
do(List,maps:new()),
v2(N-1, List);
v2(_,_) -> ok.
v3(N, List) when N > 0 ->
transform(List),
v3(N-1, List);
v3(_,_) -> ok.
do([], R) -> maps:to_list(R);
do([H={_,K,_}|T], R) ->
case maps:get(K,R,null) of
null -> NewR = maps:put(K, [H], R);
V -> NewR = maps:update(K, [H|V], R)
end,
do(T, NewR).
transform([H|T]) ->
transform([H|T], dict:new()).
transform([], D) ->
lists:reverse(
dict:fold(fun (Key, Tuples, Acc) ->
lists:append(Acc,[{Key,Tuples}])
end,
[],
D));
transform([Tuple={_S1,S2,_S3}|T], D) ->
transform(T, dict:append_list(S2, [Tuple], D)).
Running both with 100 unique keys and 100,000 records I get:
> test:test(1,100,100000).
V1 took: {75566,ok}, V2 took: {32087,ok} V3 took: {887362,ok}
ok
I would like to use the below Erlang code to get the highest integer in a list of integers but for some reason always end up getting the last integer in the list. Any help?
Solution example -> test:max([2,8,5,6]). should return 8 but with this code it returns 6.
-spec max(L) -> M when
L::[integer()],
M::integer().
max([H | T]) ->
F = fun(L, Acc) -> max([L]) end,
lists:foldl(F, H, T).
Your function F should return the max of L and Acc. You can use the builtin max/2 function for that:
...
F = fun(L, Acc) -> max(L, Acc) end.
...
Test:
1> F = fun(L, Acc) -> max(L, Acc) end.
#Fun<erl_eval.12.52032458>
2> [H | T] = [2, 8, 5, 6].
[2,8,5,6]
3> lists:foldl(F, H, T).
8
What you return in your function F will be the new value of Acc, and eventually the value lists:foldl/3 will return.
What you may want to do is do comparison inside F and check if Acc is greater than the current value. You don't need to recurse max/1 since you're iterating the list in lists:foldl/3 anyway.
Let me know if you need the actual code right away, but I would recommend figuring it out yourself. It's more fun for you that way.
I have a list in erlang containing interger values.
I want to remove values that occur only one time.(Not Duplicates).
Input = [1,3,2,1,2,2]
Output = [1,2,1,2,2]
I am newbie to erlang. I have tried an approach to sorting them first using list:sort() and then removing a member if the member next to it is the same.
I am having trouble trying to iterate the list. It would be great help if you can show me how I can do it.
multiple(L) ->
M = L -- lists:usort(L),
[X || X <- L , lists:member(X,M)].
Use map to count values and then filter values which was not present just once.
-module(test).
-export([remove_unique/1]).
remove_unique(L) ->
Count = lists:foldl(fun count/2, #{}, L),
lists:filter(fun(X) -> maps:get(X, Count) =/= 1 end, L).
count(X, M) ->
maps:put(X, maps:get(X, M, 0) + 1, M).
And test:
1> c(test).
{ok,test}
2> test:remove_unique([1,2,3,3,3,5,5,6,7,7]).
[3,3,3,5,5,7,7]
3> test:remove_unique([1,2,3,3,3,5,5,6,7,8]).
[3,3,3,5,5]
4> test:remove_unique([1,3,2,1,2,2]).
[1,2,1,2,2]
Here's a solution I'd written when first seeing the question when posted, that uses the same logic as #A.Sarid's recursion/pattern matching answer, except that I use a "Last" parameter instead of the count.
-module(only_dupes).
-export([process/1]).
process([]) -> [];
process(L) when is_list(L) ->
[H|T] = lists:sort(L),
lists:sort(process(undefined, H, T, [])).
process(Last, Curr, [], Acc)
when Curr =/= Last ->
Acc;
process(_Last, Curr, [], Acc) ->
[Curr | Acc];
process(Last, Curr, [Next | Rest], Acc)
when Curr =/= Last, Curr =/= Next ->
process(Curr, Next, Rest, Acc);
process(_Last, Curr, [Next | Rest], Acc) ->
process(Curr, Next, Rest, [Curr | Acc]).
One way for iterating a list (that as a result will return a new list) is using recursion and pattern matching.
After you sort your list you want to iterate the list and to check not only that it is different from the next element, but that there was no other equal elements before it. Consider the list [3,3,3,5,5] if you will only check the next element, the last 3 will also be unique and that is incorrect.
Here is a working program, I used a counter to cover the above case as well. See the syntax for using [H|T] for iterating over the list. You may see more cases and read more about it here.
-module(test).
-export([remove_unique/1]).
remove_unique(Input) ->
Sorted = lists:sort(Input),
remove_unique(Sorted, [], 0).
% Base case - checks if element is unique
remove_unique([H|[]],Output,Count) ->
case Count of
0 -> Output;
_Other -> [H|Output]
end;
% Count is 0 - might be unique - check with next element
remove_unique([H1|[H2|T]],Output, 0)->
case (H1 =:= H2) of
true -> remove_unique([H2|T],[H1|Output],1);
false -> remove_unique([H2|T],Output,0)
end;
% Count is > 0 - not unique - proceed adding to list until next value
remove_unique([H1|[H2|T]],Output,Count) ->
case (H1 =:= H2) of
true -> remove_unique([H2|T],[H1|Output],Count+1);
false -> remove_unique([H2|T],[H1|Output],0)
end.
Test
7> test:remove_unique([1,2,3,3,3,5,5,6,7,7]).
[7,7,5,5,3,3,3]
8> test:remove_unique([1,2,3,3,3,5,5,6,7,8]).
[5,5,3,3,3]