What will be a project level approach in Kubernetes? [closed] - docker

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
My company has one project which required 3-4 days of deployment time. I thought about it and try to make one deployment modal for this project using Kubernetes.
I read all about it but getting into project-level create some problem.
What is done till now...
Created Kubernetes cluster with one master node and one worker node in ubuntu VM.
Understand I need to create a Deployment file, Service file, Persistent volume, and claim.
Created a custom image with the base image as CentOS7 and python2.7 with certain requirements and uploaded them on the docker hub.
Now I created one Deployment.yml file to pull that image but it is Showing CrashLoopBackOff error and IT IS NOT able to pull the image through Deployment.yml file
Note: I pulled the image separately using docker and it is working.
Thanks in advance :)

It is a very wide area but I could give you certain high level points with respect to kubernetes.
Create different clusters for different projects. Also create different cluster for different environment like QA, Dev, Production.
Set resource quotas for individual projects. Also your deployments should have resource limits for RAM and CPUs. Precisely estimate the resource demand for each and every application.
Use namespaces for logical separation and using tags is always a good approach.
If you want to follow template based approach, you could search about helm charts.
Your k8s nodes, disks, deployments, services, ingress any other kind of kubernetes object you create should have labels.
Use node auto scaling (cloud specific) and horizontal pod auto scaling techniques for better scaling and resilience.
Always try to distribute your k8s deployments across region for fail-over strategy. If anything goes down in some part of your hosted region then your application should sustain it.
In case your want to move project to some reputed cloud provider, try to integrate cloud provided security and firewall rules with your k8s cluster.
I hope this would help.

I'd go with one cluster for production and one cluster for development/testing. Within the cluster you can use namespaces to isolate group of applications. For example every developer has its own namespace for testing.

Related

How to deploy a kubernetes cluster on multiple physical machines in the best manner?

I recently finished a project where I created an App consisting of several docker containers. The purpose of the app was to collect some data and safe it to an databank and also allow user interactions over an simple web gui. The app was hosted on four different Raspberry Pi's and it was possible to collect data from all physicial maschines through an api. Further you could do some simple machine learning tasks like calculating anomalies in the sensor data of the Pi's.
Now I'm trying to take the next step and using kubernetes for some load balancing and remote updates. My main goal is to remote update all raspberries from my master node. Which, in theory, would be a very handy feature. Also I want to share the ressources of the Pi's within the cluster for calculations.
I read a lot about Kubernets, Minikube, K3's, Kind and all the different approaches to set up an Kubernetes cluster, but feel like I am missing "a last puzzle piece".
So from what I understood I need an approach which allows me to set up an local (because all machines are laying on my desk/ no cloud needed) multi node cluster. My master node would be (idealy) my laptop, running Ubuntu in a virtual machine. My rasberry's would be my slave/worker nodes. If I would want to update my cluster I can use the kubernetes remote update functionality.
So my question out of this would be: Does it makes sense to use several rasberries as nodes in a kubernetes cluster and to manage them from one master node (laptop) and do you have any suggestions about the way to achieve this setup.
I usally dont like those question not containing any specific code or questions by myself, but feel like an simple hint could accelerate my project noteable. If it's the wrong place please feel free to delete this question.
Best regards
You didn't mention which rpi models you are using, but I assume you are not using rpi zeros.
My main goal is to remote update all raspberries from my master node.
Assuming that by that you mean updating your applications running in kubernetes that is installed on rpi then keep reading. Otherwise ignore all I wrote, and what you probably need is ansible or other simmilar provisioning/configuration-management/application-deployment tool.
Now answering to your question:
Does it makes sense to use several rasberries as nodes in a kubernetes cluster
yes, this is why people created k3s, so such setup is possible using less resources.
and to manage them from one master node (laptop)
assuming you will be using it for learning purpouses then why not. It is possible, but just be aware that when master node goes down (e.g. when you turn off your laptop), all cluster goes down (or at least api-server communication so you wont be able to change cluster's state). Also make sure you are using bridge networking interface for your VM so it is visible in your local network as a standalone instance.
and do you have any suggestions about the way to achieve this setup.
installing k3s on all nodes would be the easiest in your case. There are plenty of resources on the internet explaining how to achieve it.
One last thing I would like to explain is the thing with updates.
Speaking of kubernetes updates you need to know that kubernetes doesn't update itself automatically. You need to explicitly update it. New k8s version is beeing released every 3 months that sometimes "breaks" things and backward compatibility is not possible (so always read changelog before updating stuff because rollbacks may not be possible unless you backed up an etcd cluster earlier).
Speaking of updating applications - To run your app all you do is send yaml files describing your application to k8s and it handles the rest. So if you want to update your app just update the tag on container image to newer version and k8s will handle the updates. Read here more about update strategies in k8s.

Kubernetes & Docker Efficiency [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about a specific programming problem, a software algorithm, or software tools primarily used by programmers. If you believe the question would be on-topic on another Stack Exchange site, you can leave a comment to explain where the question may be able to be answered.
Closed 2 years ago.
Improve this question
I've been looking for information on how efficiently Kubernetes & Docker are in terms of using machine resources, but I haven't found much so far. Here are my three questions, all about Kubernetes+Docker:
If multiple containers on the same node are running the same binary, are the code pages shared between all these instances? That is, is there a single set of physical pages allocated on the node for all these processes? For example, if I'm running a service mesh like Istio, which runs Envoy in every pod, is the system smart enough to only load the Envoy code in memory once, or does all the indirection taking place prevent the Linux kernel from recognizing that sharing is possible?
In a large Kubernetes deployment, there will end up being a considerable number of redundantly downloaded docker images on each node. Instead, it would seem more effective to have a single in-cluster repository for these images that all nodes can fetch from. I saw this about having docker use NFS for a common image store. Is this the only answer?
I heard there's a practical limit to the number of pods Kubernetes will schedule on a single node (30). Such a small limit forces you to use smaller VMs in order to be able to fully saturate them. Anybody know why this limit exists and whether it will eventually be raised? I ask this in the context of trying to run Kubernetes on bare metal where VMs aren't used at all. In such a world, I'd want to be able to pack way more than 30 pods on a (large) physical machine.
Thank you for any insights or pointers.
You state your question in the way that you plan to use docker as container runtime for kubernetes. That is fine - but there are more choices. Depending on the runtime the answers will change.
In general kubernetes provides an abstraction over the actual scheduling and running of pods/containers. Perhaps you invest too much human time into details that can be solved with more metal, which is cheap.
Multiple containers on a single node are usually (docker/containerd/crio) just system processes. Like you launch your Apache httpd multiple times yourself. If the kernel uses memory deduplication, it can indeed share pages.
If you use a container runtime that launches micro-VMs (firecracker,kata, ...) I doubt memory deduplication will be possible.
I would not recommend to share storage for the container images, f.e. with NFS. With some customer setups I had to diagnose issues caused by this. like deadlocks. Basically you would reduce the robustness of your cluster in order to save disk space. Just use more metal.
The usual limit is 110 Pods per node which is usually plenty. You can change this limit using --max-pods parameter to the kubelet process or configuration file for kubelet. The reason for the limit is that the management of a pod incurs effort on the kubelet and etcd/apiserver side.

Where should I put shared services for multiple kubernetes-clusters?

Our company is developing an application which runs in 3 seperate kubernetes-clusters in different versions (production, staging, testing).
We need to monitor our clusters and the applications over time (metrics and logs). We also need to run a mailserver.
So basically we have 3 different environments with different versions of our application. And we have some shared services that just need to run and we do not care much about them:
Monitoring: We need to install influxdb and grafana. In every cluster there's a pre-installed heapster, that needs to send data to our tools.
Logging: We didn't decide yet.
Mailserver (https://github.com/tomav/docker-mailserver)
independant services: Sentry, Gitlab
I am not sure where to run these external shared services. I found these options:
1. Inside each cluster
We need to install the tools 3 times for the 3 environments.
Con:
We don't have one central point to analyze our systems.
If the whole cluster is down, we cannot look at anything.
Installing the same tools multiple times does not feel right.
2. Create an additional cluster
We install the shared tools in an additional kubernetes-cluster.
Con:
Cost for an additional cluster
It's probably harder to send ongoing data to external cluster (networking, security, firewall etc.).
3) Use an additional root-server
We run docker-containers on an oldschool-root-server.
Con:
Feels contradictory to use root-server instead of cutting-edge-k8s.
Single point of failure.
We need to control the docker-containers manually (or attach the machine to rancher).
I tried to google for the problem but I cannot find anything about the topic. Can anyone give me a hint or some links on this topic?
Or is it just no relevant problem that a cluster might go down?
To me, the second option sound less evil but I cannot estimate yet if it's hard to transfer data from one cluster to another.
The important questions are:
Is it a problem to have monitoring-data in a cluster because one cannot see the monitoring-data if the cluster is offline?
Is it common practice to have an additional cluster for shared services that should not have an impact on other parts of the application?
Is it (easily) possible to send metrics and logs from one kubernetes-cluster to another (we are running kubernetes in OpenTelekomCloud which is basically OpenStack)?
Thanks for your hints,
Marius
That is a very complex and philosophic topic, but I will give you my view on it and some facts to support it.
I think the best way is the second one - Create an additional cluster, and that's why:
You need a point which should be accessible from any of your environments. With a separate cluster, you can set the same firewall rules, routes, etc. in all your environments and it doesn't affect your current workload.
Yes, you need to pay a bit more. However, you need resources to run your shared applications, and overhead for a Kubernetes infrastructure is not high in comparison with applications.
With a separate cluster, you can setup a real HA solution, which you might not need for staging and development clusters, so you will not pay for that multiple times.
Technically, it is also OK. You can use Heapster to collect data from multiple clusters; almost any logging solution can also work with multiple clusters. All other applications can be just run on the separate cluster, and that's all you need to do with them.
Now, about your questions:
Is it a problem to have monitoring-data in a cluster because one cannot see the monitoring-data if the cluster is offline?
No, it is not a problem with a separate cluster.
Is it common practice to have an additional cluster for shared services that should not have an impact on other parts of the application?
I think, yes. At least I did it several times, and I know some other projects with similar architecture.
Is it (easily) possible to send metrics and logs from one kubernetes-cluster to another (we are running kubernetes in OpenTelekomCloud which is basically OpenStack)?
Yes, nothing complex there. Usually, it does not depend on the platform.

Kubernetes scaling pods using custom algorithm

Our cloud application consists of 3 tightly coupled Docker containers, Nginx, Web and Mongo. Currently we run these containers on a single machine. However as our users are increasing we are looking for a solution to scale. Using Kubernetes we would form a multi container pod. If we are to replicate we need to replicate all 3 containers as a unit. Our cloud application is consumed by mobile app users. Our app can only handle approx 30000 users per Worker node and we intend to place a single pod on a single worker node. Once a mobile device is connected to worker node it must continue to only use that machine ( unique IP address )
We plan on using Kubernetes to manage the containers. Load balancing doesn't work for our use case as a mobile device needs to be tied to a single machine once assigned and each Pod works independently with its own persistent volume. However we need a way of spinning up new Pods on worker nodes if the number of users goes over 30000 and so on.
The idea is we have some sort of custom scheduler which assigns a mobile device a Worker Node ( domain/ IPaddress) depending on the number of users on that node.
Is Kubernetes a good fit for this design and how could we implement a custom pod scale algorithm.
Thanks
Piggy-Backing on the answer of Jonah Benton:
While this is technically possible - your problem is not with Kubernetes it's with your Application! Let me point you the problem:
Our cloud application consists of 3 tightly coupled Docker containers, Nginx, Web, and Mongo.
Here is your first problem: Is you can only deploy these three containers together and not independently - you cannot scale one or the other!
While MongoDB can be scaled to insane loads - if it's bundled with your web server and web application it won't be able to...
So the first step for you is to break up these three components so they can be managed independently of each other. Next:
Currently we run these containers on a single machine.
While not strictly a problem - I have serious doubt's what it would mean to scale your application and what the challenges that come with scalability!
Once a mobile device is connected to worker node it must continue to only use that machine ( unique IP address )
Now, this IS a problem. You're looking to run an application on Kubernetes but I do not think you understand the consequences of doing that: Kubernetes orchestrates your resources. This means it will move pods (by killing and recreating) between nodes (and if necessary to the same node). It does this fully autonomous (which is awesome and gives you a good night sleep) If you're relying on clients sticking to a single nodes IP, you're going to get up in the middle of the night because Kubernetes tried to correct for a node failure and moved your pod which is now gone and your users can't connect anymore. You need to leverage the load-balancing features (services) in Kubernetes. Only they are able to handle the dynamic changes that happen in Kubernetes clusters.
Using Kubernetes we would form a multi container pod.
And we have another winner - No! You're trying to treat Kubernetes as if it were your on-premise infrastructure! If you keep doing so you're going to fail and curse Kubernetes in the process!
Now that I told you some of the things you're thinking wrong - what a person would I be if I did not offer some advice on how to make this work:
In Kubernetes your three applications should not run in one pod! They should run in separate pods:
your webservers work should be done by Ingress and since you're already familiar with nginx, this is probably the ingress you are looking for!
Your web application should be a simple Deployment and be exposed to ingress through a Service
your database should be a separate deployment which you can either do manually through a statefullset or (more advanced) through an operator and also exposed to the web application trough a Service
Feel free to ask if you have any more questions!
Building a custom scheduler and running multiple schedulers at the same time is supported:
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers/
That said, to the question of whether kubernetes is a good fit for this design- my answer is: not really.
K8s can be difficult to operate, with the payoff being the level of automation and resiliency that it provides out of the box for whole classes of workloads.
This workload is not one of those. In order to gain any benefit you would have to write a scheduler to handle the edge failure and error cases this application has (what happens when you lose a node for a short period of time...) in a way that makes sense for k8s. And you would have to come up to speed with normal k8s operations.
With the information provided, hard pressed to see why one would use k8s for this workload over just running docker on some VMs and scripting some of the automation.

Docker Swarm - Deploying stack with shared code base across hosts

I have a question related with the best practices for deploying applications to the production based on the docker swarm.
In order to simplify discussion related with this question/issue lets consider following scenario:
Our swarm contains:
6 servers (different hosts)
on each of these servers, we will have one service
each service will have only one task/replica docker running
Memcached1 and Memcached2 uses public images from docker hub
"Recycle data 1" and "Recycle data 2" uses custom image from private repository
"Client 1" and "Client 2" uses custom image from private repository
So at the end, for our example application, we have 6 dockers running across 6 different servers. 2 dockers are memcached, and 4 of them are clients which are communicating with memcached.
"Client 1" and "Client 2" are going to insert data in the memcached based on the some kind of rules. "Recycle data 1" and "Recycle data 2" are going to update or delete data from memcached based on some kind of rules. Simple as that.
Our applications which are communicating with memcached are custom ones, and they are written by us. The code for these application reside on github (or any other repository). What is the best way to deploy this application to the production:
Build images which will contain copied code within the image which you can use to deploy things to the swarm
Build image which will use volume where code reside outside of the image.
Having in mind that I am deploying swarm to the production for the first time, I can see a lot of issues with way number 1. Having a code incorporate to the images seems non logical to me, having in mind that in 99% of the time, the updates which are going to happen are going to be code based. This will require building image every time when you want to update the code which runs on specific docker (no matter how small that change is).
Way number 2. seems much more logical to me. But at this specific moment I am not sure is this possible? So there are a number of questions here:
What is the best approach in case where we are going to host multiple dockers which will run the same code in the background?
Is it possible on docker swarm, to have one central host,server (manager, anywhere) where we can clone our repositories and share those repositores as volumes across the docker swarm? (in our example, all 4 customer services will mount volume where we have our code hosted)
If this is possible, what is the docker-compose.yml implementation for it?
After digging more deeper and working with docker and docker swarm mode for last 3 months, these are the answers on questions above:
Answer 1: In general, you should consider your docker image as "compiled" version of your program. Your image should contain either code base, or compiled version of the program (depends which programming language you are using), and that specific image represents your version of the app. Every single time when you want to deploy your next version, you will generate the new image.
This is probably best approach for 99% of the apps which are going to be hosted with the docker (exceptions are development environments and apps where you really want to bash and control things directly from the docker container by itself).
Answer 2: It is possible but it is extremely bad approach. As mentioned in answer one, the best one is to copy the app code directly into the image and "consider" your image (running container) as "app by itself".
I was not able to wrap my head around this concept at the begging, because this concept will not allow you to simply go to the server (or where ever you are hosting your docker) and change the app and restart docker (obviously because container will be at the same beginning again after restart using the same image, same base of code you deployed with that image). Any kind of change SHOULD and NEEDS to be deployed as different image with different version. That is what docker is all about.
Additionally, initial idea for sharing same code base across multiple swarm services is possible, but it totally ruins purpose of the versioning across docker swarm.
Consider having 3 services which are used as redundant services (failover), and you want to use new version on one of them as beta test. This will not be possible with the shared code base.

Resources