tl;dr - I use an autoencoder to try to reduce input dimensions for a reinforcement-learning (RL) agent to learn how to play Atari-KungFu. But it fails at encoding/decoding thrown knives, because they are only a couple pixels and getting them wrong probably has negligible impact on the autoencoder MSE loss (see green arrows in bottom left of image). This will probably permanently hobble the results. I want to figure out if there is a way to solve this -- preferably with a generalized solution, but I'd be happy for now with something specific to this problem.
Background:
I am working on Week5 of the "Practical Reinforcement Learning" course on Coursera (National Research University HSE), and I decided to spend extra time trying to expand performance on the Atari-KungFu assignment using Actor-Critic architecture. This post is not about actor-critic, but more about an interesting sub-problem I ran into related to autoencoders.
I create an encoder which outputs a tanh-64-neuron layer, which is used as a common input to the decoder, policy learner (actor), and value learner (critic). During training, the simulator returns batches of four sequential frames (64 x 144 x 4) and rewards from the last action. Then images are first used to train the autoencoder, then used with the rewards to train the actor & critic branches.
I display some metrics and example frames every 25000 iterations to see how it's doing. If the reconstructed images are accurate, then the inputs to the actor & critic branches should be getting good distilled information for efficient learning.
You can see below that the autoencoder is pretty good except for the thrown knives (see bottom-left). Arguably this is because missing those couple pixels minimally increases the MSE loss of the reconstructed image, so it has little incentive to learn it (and also there's not a lot of frames that have knives). Yet, seeing those knives is critical for the RL agent to learn to how to survive.
I haven't seen this kind of problem addressed before. A tiny artifact in the input images is crucial for learning, but is unlikely to be learned by the autoencoder. Can we fix/improve this?
IMO your problem is loss specific, some things which would probably help autoencoder reconstruct knife as well:
Find knives in input image using image processing techniques. Regions where knives are present should have higher loss value in MSE, say 10 times more. One way to find those semi-automatically could probably be convolution with big kernel; White pixels at the strict center would give more weight and only zeros around it would give it more weight as well. Something along these lines should find a region where only knives are located (throwing guys wouldn't, as they contain too many white pixels and holes). Using some threshold found empirically for the value of this kernel should be enough to correctly find them.
Lower loss for images when no knive was found, say divided by half. This would focus autoencoder harder on rarely seen cases when knive is seen.
On the downside - I suppose it could introduce some artifacts. In such case you may think about usage of pretrained encoder (like some version of ResNet) and increase model's capabilities.
Related
Disclaimer: I'm a machine learning beginner.
I'm working on visualizing high dimensional data (text as tdidf vectors) into the 2D-space. My goal is to label/modify those data points and recomputing their positions after the modification and updating the 2D-plot. The logic already works, but each iterative visualization is very different from the previous one even though only 1 out of 28.000 features in 1 data point changed.
Some details about the project:
~1000 text documents/data points
~28.000 tfidf vector features each
must compute pretty quickly (let's say < 3s) due to its interactive nature
Here are 2 images to illustrate the problem:
Step 1:
Step 2:
I have tried several dimensionality reduction algorithms including MDS, PCA, tsne, UMAP, LSI and Autoencoder. The best results regarding computing time and visual representation I got with UMAP, so I sticked with it for the most part.
Skimming some research papers I found this one with a similar problem (small change in high dimension resulting in big change in 2D):
https://ieeexplore.ieee.org/document/7539329
In summary, they use t-sne to initialize each iterative step with the result of the first step.
First: How would I go about achieving this in actual code? Is this related to tsne's random_state?
Second: Is it possible to apply that strategy to other algorithms like UMAP? tsne takes way longer and wouldn't really fit into the interactive use case.
Or is there some better solution I haven't thought of for this problem?
If one trains a model using a SVM from kernel data, the resultant trained model contains support vectors. Now consider the case of training a new model using the old data already present plus a small amount of new data as well.
SO:
Should the new data just be combined with the support vectors from the previously formed model to form the new training set. (If yes, then how to combine the support vectors with new graph data? I am working on libsvm)
Or:
Should the new data and the complete old data be combined together and form the new training set and not just the support vectors?
Which approach is better for retraining, more doable and efficient in terms of accuracy and memory?
You must always retrain considering the entire, newly concatenated, training set.
The support vectors from the "old" model might not be support vectors anymore in case some "new points" are closest to the decision boundary. Behind the SVM there is an optimization problem that must be solved, keep that in mind. With a given training set, you find the optimal solution (i.e. support vectors) for that training set. As soon as the dataset changes, such solution might not be optimal anymore.
The SVM training is nothing more than a maximization problem where the geometrical and functional margins are the objective function. Is like maximizing a given function f(x)...but then you change f(x): by adding/removing points from the training set you have a better/worst understanding of the decision boundary since such decision boundary is known via sampling where the samples are indeed the patterns from your training set.
I understand your concerned about time and memory efficiency, but that's a common problem: indeed training the SVMs for the so-called big data is still an open research topic (there are some hints regarding backpropagation training) because such optimization problem (and the heuristic regarding which Lagrange Multipliers should be pairwise optimized) are not easy to parallelize/distribute on several workers.
LibSVM uses the well-known Sequential Minimal Optimization algorithm for training the SVM: here you can find John Pratt's article regarding the SMO algorithm, if you need further information regarding the optimization problem behind the SVM.
Idea 1 has been already examined & assessed by research community
anyone interested in faster and smarter aproach (1) -- re-use support-vectors and add new data -- kindly review research materials published by Dave MUSICANT and Olvi MANGASARIAN on such their method referred as "Active Support Vector Machine"
MATLAB implementation: available from http://research.cs.wisc.edu/dmi/asvm/
PDF:[1] O. L. Mangasarian, David R. Musicant; Active Support Vector Machine Classification; 1999
[2] David R. Musicant, Alexander Feinberg; Active Set Support Vector Regression; IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004
This is a purely theoretical thought on your question. The idea is not bad. However, it needs to be extended a bit. I'm looking here purely at the goal to sparsen the training data from the first batch.
The main problem -- which is why this is purely theoretical -- is that your data is typically not linear separable. Then the misclassified points are very important. And they will spoil what I write below. Furthermore the idea requires a linear kernel. However, it might be possible to generalise to other kernels
To understand the problem with your approach lets look at the following support vectors (x,y,class): (-1,1,+),(-1,-1,+),(1,0,-). The hyperplane is the a vertical line going trough zero. If you would have in your next batch the point (-1,-1.1,-) the max margin hyperplane would tilt. This could now be exploited for sparsening. You calculate the - so to say - minimal margin hyperplane between the two pairs ({(-1,1,+),(1,0,-)}, {(-1,-1,+),(1,0,-)}) of support vectors (in 2d only 2 pairs. higher dimensions or non-linear kernel might be more). This is basically the line going through these points. Afterwards you classify all data points. Then you add all misclassified points in either of the models, plus the support vectors to the second batch. Thats it. The remaining points can't be relevant.
Besides the C/Nu problem mentioned above. The curse of dimensionality will obviously kill you here
An image to illustrate. Red: support vectors, batch one, Blue, non-support vector batch one. Green new point batch two.
Redline first Hyperplane, Green minimal margin hyperplane which misclassifies blue point, blue new hyperplane (it's a hand fit ;) )
Given D=(x,y), y=F(x), it seems most machine learning methods only outputs y as a univariate, either a label or a real value. But I am facing a situation that x vector may only have 5~9 dimensions while I need y to be a multinomial distribution vector which can have up to 800 dimensions. This makes the problem really tricky.
I looked into a lot of things in multitask machine learning methods, where I can train all these y_i at the same time. And of course, another stupid way is that I can also train all these dimensions separately without considering the linkage between tasks. But the problem is, after reviewing many papers, seem that most MTL experiments only deal with 10~30 tasks, which means 800 tasks can be crazy and bad to train. Maybe clustering could be a solution, but I am really curious that can anyone give some suggestions about other ways to deal with this problem, not from a MTL perspective.
When the input is so "small" and the output so big, I would expect there to be a different representation of those output values. You could analyze if they are a linear or nonlinear combination of some sort, so to estimate the "function parameters" instead of the values itself. Example: We once have estimated a time series which could be "reduced" to a weighted sum of normal distributions, so we just had to estimate the weights and parameters.
In the end you will reach only a 6-to-12-dimensional subspace in some sense (not linear, probably) when you have only 6 input parameters. They can of course be a bit complicated, but to avoid the chaos in a 800-dim space I would really look into parametrizing the result.
And as I commented the machine learning that I know produce vectors. http://en.wikipedia.org/wiki/Bayes_estimator
I am working on Soil Spectral Classification using neural networks and I have data from my Professor obtained from his lab which consists of spectral reflectance from wavelength 1200 nm to 2400 nm. He only has 270 samples.
I have been unable to train the network for accuracy more than 74% since the training data is very less (only 270 samples). I was concerned that my Matlab code is not correct, but when I used the Neural Net Toolbox in Matlab, I got the same results...nothing more than 75% accuracy.
When I talked to my Professor about it, he said that he does not have any more data, but asked me to do random perturbation on this data to obtain more data. I have research online about random perturbation of data, but have come up short.
Can someone point me in the right direction for performing random perturbation on 270 samples of data so that I can get more data?
Also, since by doing this, I will be constructing 'fake' data, I don't see how the neural network would be any better cos isn't the point of neural nets using actual real valid data to train the network?
Thanks,
Faisal.
I think trying to fabricate more data is a bad idea: you can't create anything with higher information content than you already have, unless you know the true distribution of the data to sample from. If you did, however, you'd be able to classify with the Bayes optimal error rate, which would be impossible to beat.
What I'd be looking at instead is whether you can alter the parameters of your neural net to improve performance. The thing that immediately springs to mind with small amounts of training data is your weight regulariser (are you even using regularised weights), which can be seen as a prior on the weights if you're that way inclined. I'd also look at altering the activation functions if you're using simple linear activations, and the number of hidden nodes in addition (with so few examples, I'd use very few, or even bypass the hidden layer entirely since it's hard to learn nonlinear interactions with limited data).
While I'd not normally recommend it, you should probably use cross-validation to set these hyper-parameters given the limited size, as you're going to get unhelpful insight from a 10-20% test set size. You might hold out 10-20% for final testing, however, so as to not bias the results in your favour.
First, some general advice:
Normalize each input and output variable to [0.0, 1.0]
When using a feedforward MLP, try to use 2 or more hidden layers
Make sure your number of neurons per hidden layer is big enough, so the network is able to tackle the complexity of your data
It should always be possible to get to 100% accuracy on a training set if the complexity of your model is sufficient. But be careful, 100% training set accuracy does not necessarily mean that your model does perform well on unseen data (generalization performance).
Random perturbation of your data can improve generalization performance, if the perturbation you are adding occurs in practice (or at least similar perturbation). This works because this means teaching your network on how the data could look different but still belong to the given labels.
In the case of image classification, you could rotate, scale, noise, etc. the input image (the output stays the same, naturally). You will need to figure out what kind of perturbation could apply to your data. For some problems this is difficult or does not yield any improvement, so you need to try it out. If this does not work, it does not necessarily mean your implementation or data are broken.
The easiest way to add random noise to your data would be to apply gaussian noise.
I suppose your measures have errors associated with them (a measure without errors has almost no meaning). For each measured value M+-DeltaM you can generate a new number with N(M,DeltaM), where n is the normal distribution.
This will add new points as experimental noise from previous ones, and will add help take into account exprimental errors in the measures for the classification. I'm not sure however if it's possible to know in advance how helpful this will be !
I'm working on a machine learning problem in image processing. I want to get the location of an object in an image by using Histogram of Oriented Gradients (HOG) and a support vector machine (SVM). I've read a couple of articles and tutorials about training the SVM. The setup is pretty standard. I have labeled positive training images and now need to generate a set of negative training samples.
In literature, the approach to generate negative training samples by randomly choosing a position is found very often. I've also seen some approaches where in a successive step to choosing random negative samples, the false-positives of a detection are used as negative training samples once again.
However, I'm wondering if one could not use this approach generally from the start. So one would generate only one false training sample randomly, run the detection and put false-positives in the negative training set again. This seems quite an obvious strategy to me, but I wonder if I'm missing something.
The theory behind this method is laid out in Object Detection with Discriminatively Trained Part Based Models by P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan in their PAMI paper. In essence, your starting negative set does not matter, you will always converge to the same classifier if you iteratively add hard samples (with an SVM margin > -1). Starting with a single negative would simply make this convergence slower.
To me it sounds like you want to train the SVM classifier online/incrementally, i.e. updating the classifier with new samples. Such methods are generally only used if new data comes available over time. In your case it seems that you can generate a whole set of negative training samples, so there would be no need to train it incrementally. I'm inclined to say that training the classifier in one run will be better than doing this incrementally (as hinted at by larsmans).
(Again, I'm not an image processing specialist, so take this with a grain of salt.)
I'm wondering if one could not use this approach generally from the start.
You'd need some way to detect the false positives from a classification run. To do so, you need a ground truth, that is, you need a human in the loop. In effect, you'd be doing active learning. If that's what you want to do, you could just as well start with a bunch of hand-labeled negative examples.
Alternatively, you could set this up as a PU learning problem. I have no idea whether that works well with images, but for text classification, it sometimes works.