OpenID connect access token to authenticate my own REST api - oauth-2.0

If I authenticate with OpenID connect, I can authenticate my SPA ok.
How do I use the obtained access token now to access my own REST resources?
It's a simple question, but I don't find satisfactory answers.
A prominent answer I always find is 'use oidc when you don't have a backend'.
Now that makes me wonder if ever a webapp was created that didn't need a backend.
Oidc is almost always the answer when the question of storing a refresh token in the client pops up (like in 'use oidc, it's a better architecture and ditch the refresh token') but it doesn't really explain anything.
So when the user logs in with, say Google, he obtains an identity and an access token (to ensure that the user is who he claims he is).
So how do you use this to authenticate at your own REST service?
The only real way I see it as stateless is by sending another request at the server to the provider on every request to the REST api, to match the identity to the validity of the access token there.
If not, we fall back to the good 'ol session vs jwt discussion, which doesn't quite seem to click with the oidc because now we're duplicating authentication logic.
And the good 'ol refresh token in the browser is generally promoted as a bad idea, although you can keep access tokens in the browser session storage (according to the js oidc client library), autorefresh them with the provider and that's fine then (-.-).
I'm running again circles.
Anybody can lay this out for me and please break the loop?

Your SPA (frontend) needs to add an authorization header with access token to each API request. Frontend should implement the authorization code flow + PKCE (implicit flow is not recommended anymore) + it needs to refresh access token.
Your API (backend) needs to implement OIDC (or you can use "oidc auth" proxy in front of backend) - it just validates access token, eventually returns 401 (Unauthorized) for request with invalid/expired/... token. This token validation is stateless, because it needs only public key(s) to verify token signature + current timestamp. Public keys are usually downloaded when backends is starting from OIDC discovery URL, so they doesn't need to be redownloaded during every backend request.
BTW: refresh token in the browser is bad idea, because refresh token is equivalent of your own credentials

Related

Authorization and Authentication in microservices - the good way

I'm considering a microservice architecture and I'm struggle with authorization and authentication. I found a lot of resources about oauth2 and openid connect that claim they solve the issue but it is not clear enough for me.
Let's consider we have a following architecture:
In my system I want to add a feature only for a certain group of users defined by role. I want to also know the name of the user, their email and id.
After my research I find the following solution to be a good start:
SPA application displays login form.
User fills in the form and sends POST request to authN&authZ server.
The server replies with access token (being a JWT) that contains name, email, id and role of the user. The response contains a refresh token as well.
SPA application stores the token and attaches it to every request it makes.
Microservice 1 and Microservice 2 check if the token is valid. If so, they check if the role is correct. If so, they take user info and process the request.
How far away from the good solution I am? The login flow looks like Implicit flow with form post described here but with implicit consents and I'm not sure if it's fine.
Moving forward, I find passing user data in JWT (such as name, email) to be not a good solution as it exposes sensitive data. I found resources that say it is recommended to expose only a reference to a user in token (such as ID) and replace such token with a classic access_token in reverser-proxy/api gateway when sending a request to a microservice. Considering such solution I think that following scenario is a good start:
SPA application displays login form.
User fills in the form and sends POST request to authN&authZ server.
The server replies with access token and refresh token. API gateway (in middle) replaces access token with ID token and stores claims from access token within its cache.
SPA application stores the token and attaches it to every request it makes.
Handling a request, API Gateway takes ID Token and based on the user ID generates a new access token. The access token is send to microservice 1 or microservice 2 that validate it as previous.
How do you find such solutions? Is this a secure approach? What should I improve proposed flow?
Thanks in advance!
You are on the right tracks:
ZERO TRUST
This is an emerging trend, where each microservice validates a JWT using a library - see this article. JWT validation is fast and designed to scale.
CONFIDENTIAL TOKENS FOR CLIENTS
Internet clients should not be able to read claims that APIs use. The swapping tokens in a gateway concept is correct, but the usual approach is to issue opaque access tokens here, rather than using ID tokens. At Curity we call this the Phantom Token Approach.
SECURE COOKIES IN THE BROWSER
One area to be careful about is using tokens in the browser. These days SameSite=strict HTTP Only cookies are preferred. This requires a more complex flow though. See the SPA Best Practices for some recommendations on security.
SPAs should use the code flow by the way - aim to avoid the implicit flow, since it can leak tokens in the browser history or web server logs.
SUMMARY
All of the above are general security design patterns to aim for, regardless of your Authorization Server, though of course it is common to get there one step at a time.
Don't use your own login form. As Garry Archer wrote, use the auth code flow with PKCE which is the recomended flow for applications running in a browser.
If you don't want to get an ID token, don't ask for the openid scope in the initial auth request. The type of issued access tokens (JWT or opaque) can often be configured on your OAuth2 server. So I see no need to issue new tokens at your gateway. Having more token issuers opens more ways of attacking your system.
Your backend modules can use the userinfo endpoint, which will give them info about the user and validate the token. This way, if the token was invalidated (e.g. user logged out), the request processing will not proceed. If you validate just a JWT signature, you will not know about the token being invalidated.
If you plan to make requests between your backend modules as part of of a user request processing, you can use the original access token received from your SPA as long as your modules are in a safe environment (e.g. one Kubernates).

In Oauth OpenID - Authorization code grant type, where will we exchange the "code" for "access token" and why?

In Oauth Open ID - Authorization Code grant type flow,
We will call the Oauth service provider with the client_id = '..', redirect_uri='...', response_type='code', scope='...', state='...'.
Then from Oauth Service Provider, we will get the authorization code instead of the token.
Q1. So what is the next step? Do we send the code to the back end where the token request will happen or will we call the Oauth service provider from the browser it self?
Q2. Why do we need this additional calls? what problem it is solving?
Q3 After the token is received, how we use it in a typical web application?
p.s: I have read lot of blogs, but unable to get the whole picture. Could you please help me?
Q1. In 2021 it is recommended to keep tokens out of the browser, so send the code to the back end, which will exchange it for tokens and issue secure SameSite HTTP Only cookies to the browser. The cookies can contain tokens if they are strongly encrypted.
Q2. The separation is to protect against browser attacks, where login redirects take place. An authorization code can only be used once but can potentially be intercepted - by a 'man in the browser' - eg some kind of plugin or malicious code. If this happens then the attacker cannot exchange it for tokens since a code_verifier and client_secret are also needed.
Q3. The token is sent from the browser to APIs, but the browser cannot store tokens securely. So it is recommended to unpack tokens from cookies in a server side component, such as a reverse proxy. This limits the scope for tokens to be intercepted in the browser, and also deals well with token renewal, page reloads and multi tab browsing.
APPROACHES
The above type of solution can be implemented in two different ways:
Use a website based technology that does OAuth work and also serves web content
Use an SPA and implement OAuth work in an API driven manner
Unfortunately OAuth / OpenID in the browser is difficult. At Curity we have provided some resources based on the benefit of our experience, and we hope that this provides a 'whole picture' view of overall behaviour for modern browser based apps:
Code
Docs

OAuth 2.0 Single-use Access Token for unauthenticated user via IdentityServer4

I apologies in advance for incorrect use of oauth terms.
I have 4 "parties" as follows (intentionally not using oauth terms where possible):
End-user in a browser (javascript)
Our website (aspnet)
Our web api (aspnet)
Our auth server (aspnet utilising identityserver 4)
My usage scenario is that we only want the API to be called by a browser that has requested a page from the website first. Whilst the API doesn't release sensitive information, we would like to introduce a layer of complexity with regards to the API being spammed.
Our end user's will not be logged in.
I imagine such a flow being akin:
Browser requests a certain page from the website (one that will likely lead to js making an api call)
Website requests token from auth server
Auth server verifies token request came from website (the server itself)
Auth server returns a token to the website
Website returns page including the access token
Browser is able to make a request to api using token
Although convoluted, I believe this is at least similar to the Client Access Grant flow?
These tokens could then be throttled either by website or auth server.
Yes, I'm aware that this doesn't protect the api from numerous other vectors, but it does eliminate the simplest of cases which is all we're looking to achieve for now. I'll add, I didn't define this requirement, I'm simply trying to find a way to achieve it utilising techs out there instead of making the mistake of rolling anything of my own.
Could someone confirm/deny that there is an oauth flow I could use here? Any sample projects using the given flow and IdentityServer?
IdentityServer3 / non-aspnet[core/5] examples are fine, I can translate.
What you describe is the Client Credentials Grant where your website (client) gets an access token from identityserver (auth server). That access token can then be used to call endpoints on your web API (resource server).
The token is a bearer token and can be used by anyone who has it, so if you are comfortable with your website passing it back to a browser on an HTTP response, then it will work just fine.
I'm not sure what you mean by throttling the tokens - once minted they are valid for their lifetime. I guess you can keep the time-to-live very short to achieve the single usage you want though.

oAuth2.0 access token confusion

I am following this tutorial about OAuth2.0 https://developers.google.com/youtube/v3/guides/authentication
It looks quite clear how OAuth2.0 works. But I have a bit confusion at the access token part.
After obtaining an access token for a user, your application can use
that token to submit authorized API requests on that user's behalf.
The API supports two ways to specify an access token: Specify the
access token as the value of the access_token query parameter:
www.googleapis.com/youtube/v3/videos?access_token=ACCESS_TOKEN
if someone acquired this access token during the url transferring they can access this protected resource right?
How the server know if the request is coming from the client initially requested the access token?
UPDATE:
after reading this post Are HTTPS headers encrypted? my confusion is cleared. I thought query string is not encrypted during transmission in the network.
Generally I think the consensus is that OAuth 2.0 is a server side technology and all access tokens and communication should be transmitted using SSL as the bearer tokens need to be kept as secure as possible.
Also, you need to know that there are 2 types of flows in OAuth 2.0
i) Implicit grant flow - This is the flow where the user logs in to the service provider and his browser gets the access token. Say you have X.com and Log in via Facebook. Once the user keys in his FB credentials, the access token is sent to his browser.
ii) Authorization Code flow - In this flow (consider the above situation again), facebook will pass an authorization code to the user's browser. If anyone, somehow, intercepts the authorization code there is nothing he can do. An authorization code can be exchanged for an access when passed with valid client credentials. So, when the user logs in, his browser gets an authorization code which is passed to your server at X.com. from there you would hit the code-token exchange endpoint provided by FB and get the access token returned to your server!
Authorization code flow adds another layer of security, where the access token is visible only to the client + server and not to the user agent. And as you figured out yourself, the token is passed via HTTPS.

What is the difference between the OAuth Authorization Code and Implicit workflows? When to use each one?

OAuth 2.0 has multiple workflows. I have a few questions regarding the two.
Authorization code flow - User logs in from client app, authorization server returns an authorization code to the app. The app then exchanges the authorization code for access token.
Implicit grant flow - User logs in from client app, authorization server issues an access token to the client app directly.
What is the difference between the two approaches in terms of security? Which one is more secure and why?
I don't see a reason why an extra step (exchange authorization code for token) is added in one work flow when the server can directly issue an Access token.
Different websites say that Authorization code flow is used when client app can keep the credentials secure. Why?
The access_token is what you need to call a protected resource (an API). In the Authorization Code flow there are 2 steps to get it:
User must authenticate and returns a code to the API consumer (called the "Client").
The "client" of the API (usually your web server) exchanges the code obtained in #1 for an access_token, authenticating itself with a client_id and client_secret
It then can call the API with the access_token.
So, there's a double check: the user that owns the resources surfaced through an API and the client using the API (e.g. a web app). Both are validated for access to be granted. Notice the "authorization" nature of OAuth here: user grants access to his resource (through the code returned after authentication) to an app, the app get's an access_token, and calls on the user's behalf.
In the implicit flow, step 2 is omitted. So after user authentication, an access_token is returned directly, that you can use to access the resource. The API doesn't know who is calling that API. Anyone with the access_token can, whereas in the previous example only the web app would (it's internals not normally accessible to anyone).
The implicit flow is usually used in scenarios where storing client id and client secret is not recommended (a device for example, although many do it anyway). That's what the the disclaimer means. People have access to the client code and therefore could get the credentials and pretend to become resource clients. In the implicit flow all data is volatile and there's nothing stored in the app.
I'll add something here which I don't think is made clear in the above answers:
The Authorization-Code-Flow allows for the final access-token to never reach and never be stored on the machine with the browser/app. The temporary authorization-code is given to the machine with the browser/app, which is then sent to a server. The server can then exchange it with a full access token and have access to APIs etc. The user with the browser gets access to the API only through the server with the token.
Implicit flow can only involve two parties, and the final access token is stored on the client with the browser/app. If this browser/app is compromised so is their auth-token which could be dangerous.
tl;dr don't use implicit flow if you don't trust the users machine to hold tokens but you do trust your own servers.
The difference between both is that:
In Implicit flow,the token is returned directly via redirect URL with "#" sign and this used mostly in javascript clients or mobile applications that do not have server side at its own, and the client does not need to provide its secret in some implementations.
In Authorization code flow, code is returned with "?" to be readable by server side then server side is have to provide client secret this time to token url to get token as json object from authorization server. It is used in case you have application server that can handle this and store user token with his/her profile on his own system, and mostly used for common mobile applications.
so it is depends on the nature of your client application, which one more secure "Authorization code" as it is request the secret on client and the token can be sent between authorization server and client application on very secured connection, and the authorization provider can restrict some clients to use only "Authorization code" and disallow Implicit
Which one is more secure and why?
Both of them are secure, it depends in the environment you are using it.
I don't see a reason why an extra step (exchange authorization code
for token) is added in one work flow when the server can directly
issue an Access token.
It is simple. Your client is not secure. Let's see it in details.
Consider you are developing an application against Instagram API, so you register your APP with Instagram and define which API's you need. Instagram will provide you with client_id and client_secrect
On you web site you set up a link which says. "Come and Use My Application". Clicking on this your web application should make two calls to Instagram API.
First send a request to Instagram Authentication Server with below parameters.
1. `response_type` with the value `code`
2. `client_id` you have get from `Instagram`
3. `redirect_uri` this is a url on your server which do the second call
4. `scope` a space delimited list of scopes
5. `state` with a CSRF token.
You don't send client_secret, You could not trust the client (The user and or his browser which try to use you application). The client can see the url or java script and find your client_secrect easily. This is why you need another step.
You receive a code and state. The code here is temporary and is not saved any where.
Then you make a second call to Instagram API (from your server)
1. `grant_type` with the value of `authorization_code`
2. `client_id` with the client identifier
3. `client_secret` with the client secret
4. `redirect_uri` with the same redirect URI the user was redirect back to
5. `code` which we have already received.
As the call is made from our server we can safely use client_secret ( which shows who we are), with code which shows the user have granted out client_id to use the resource.
In response we will have access_token
The implicit grant is similar to the authorization code grant with two distinct differences.
It is intended to be used for user-agent-based clients (e.g. single page web apps) that can’t keep a client secret because all of the application code and storage is easily accessible.
Secondly instead of the authorization server returning an authorization code which is exchanged for an access token, the authorization server returns an access token.
Please find details here
http://oauth2.thephpleague.com/authorization-server/which-grant/
Let me summarize the points that I learned from above answers and add some of my own understandings.
Authorization Code Flow!!!
If you have a web application server that act as OAuth client
If you want to have long lived access
If you want to have offline access to data
when you are accountable for api calls that your app makes
If you do not want to leak your OAuth token
If you don't want you application to run through authorization flow every time it needs access to data. NOTE: The Implicit Grant flow does not entertain refresh token so if authorization server expires access tokens regularly, your application will need to run through the authorization flow whenever it needs access.
Implicit Grant Flow!!!
When you don't have Web Application Server to act as OAuth Client
If you don't need long lived access i.e only temporary access to data is required.
If you trust the browser where your app runs and there is limited concern that the access token will leak to untrusted users.
Implicit grant should not be used anymore, see the IETF current best practices for details. https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-18#section-2.1.2
As an alternative use a flow with response type code; for clients without possibility to securely store client credentials the authorization code with PKCE flow should be your choice.
From practical perspective (What I understood), The main reason for having Authz code flow is :
Support for refresh tokens (long term access by apps on behalf of User), not supported in implicit: refer:https://www.rfc-editor.org/rfc/rfc6749#section-4.2
Support for consent page which is a place where Resource Owner can control what access to provide (Kind of permissions/authorization page that you see in google). Same is not there in implicit . See section : https://www.rfc-editor.org/rfc/rfc6749#section-4.1 , point (B)
"The authorization server authenticates the resource owner (via the user-agent) and establishes whether the resource owner grants or denies the client's access request"
Apart from that, Using refresh tokens, Apps can get long term access to user data.
There seem to be two key points, not discussed so far, which explain why the detour in the Authorization Code Grant Type adds security.
Short story: The Authorization Code Grant Type keeps sensitive information from the browser history, and the transmission of the token depends only on the HTTPS protection of the authorization server.
Longer version:
In the following, I'll stick with the OAuth 2 terminology defined in the RFC (it's a quick read): resource server, client, authorization server, resource owner.
Imagine you want some third-party app (= client) to access certain data of your Google account (= resource server). Let's just assume Google uses OAuth 2. You are the resource owner for the Google account, but right now you operate the third-party app.
First, the client opens a browser to send you to the secure URL of the Google authorization server. Then you approve the request for access, and the authorization server sends you back to the client's previously-given redirect URL, with the authorization code in the query string. Now for the two key points:
The URL of this redirect ends up in the browser history. So we don't want a long lived, directly usable access token here. The short lived authorization code is less dangerous in the history. Note that the Implicit Grant type does put the token in the history.
The security of this redirect depends on the HTTPS certificate of the client, not on Google's certificate. So we get the client's transmission security as an extra attack vector (For this to be unavoidable, the client needs to be non-JavaScript. Since otherwise we could transmit the authorization code via fragment URL, where the code would not go through the network. This may be the reason why Implicit Grant Type, which does use a fragment URL, used to be recommended for JavaScript clients, even though that's no longer so.)
With the Authorization Code Grant Type, the token is finally obtained by a call from the client to the authorization server, where transmission security only depends on the authorization server, not on the client.

Resources