How to clarify which model layers to use for machine learning? - machine-learning

We are currently doing a little experiment with machine learning with Deeplearning4j.
We have voltage measurements in time series from different devices that I know that depends on each other.
We manage to labeling huge amount of those data with one and zeroes.
Our problem is to figure out the use of layers for the model.
For us it seems that it is experience that it is used among people and examples seems to be random.
We currently using LSTM and RNN
But how can we clarify if there is better models?
We would like to see if the model can figure out some dependencies through predictions that we haven’t noticed.

The best way to go about this, is to start by looking at your data and what you want to get out of it. Then you should start out by setting up a base line. Use the simplest possible modelling technique you are familiar with just so you have anything at all.
In your case it looks like you have a label for each timestep. So, you might just use simple linear regression for each timestep separately to get a feel for what you would get if you don't incorporate any sequence information at all. Anything that works fast is a good candidate for this step.
Once you have that baseline, you can start looking at building a deeplearning model that outperforms this baseline.
For time series data, you have two options at the moment in DL4J, either you use a recurrent layer like LSTM, or you use convolutions over time.
If you want to have an output at each timestep, then a recurrent layer is probably better for you. The convolutional approach usually works best if you want to have just a single result after reading in the whole sequence.
For choosing how wide those layers should be, and how many layers you should use, you will have to experiment a bit.
The first thing that you want to achieve is to build a model that can over-fit on a subset of your data. So you start out, by passing in only a single batch of examples over and over again. If the model can't overfit on that, you make the layers wider. If the layers start getting too wide, you add another layer on top.
If you use the deeplearning4j-ui module, it will tell you how many parameters your model currently has. They should usually be less than the number of total examples you have, or you risk overfitting on your full data set.
As soon as you can train a model to overfit on a small subset of your data, you can start training it with all of your data.
At that point you can then start looking into finding better hyperparameters and seeing by how much you can beat your baseline.

Related

Are there any ways to build an ML model using CBIR and SIFT for image comparison in my case?

I have this project I'm working on. A part of the project involves multiple test runs during which screenshots of an application window are taken. Now, we have to ensure that screenshots taken between consecutive runs match (barring some allowable changes). These changes could be things like filenames, dates, different logos, etc. within the application window that we're taking a screenshot of.
I had the bright idea to automate the process of doing this checking. Essentially my idea was this. If I could somehow mathematically quantify the difference between a screenshot from the N-1th run and the Nth run, I could create a binary labelled dataset that mapped feature vectors of some sort to a label (0 for pass or 1 for fail if the images do not adequately match up). The reason for all of this was so that my labelled data would help make the model understand what scale of changes are acceptable, because there are so many kinds that are acceptable.
Now lets say I have access to lots of data that I have meticulously labelled, in the thousands. So far I have tried using SIFT in opencv using keypoint matching to determine a similarity score between images. But this isn't an intelligent, learning process. Is there some way I could take some information from SIFT and use it as my x-value in my dataset?
Here are my questions:
what would that be the information I need as my x-value? It needs to be something that represents the difference between two images. So maybe the difference between feature vectors from SIFT? What do I do when those vectors are of slightly different dimensions?
Am I on the right track with thinking about using SIFT? Should I look elsewhere and if so where?
Thanks for your time!
The approach that is being suggested in the question goes like this -
Find SIFT features of two consecutive images.
Use those to somehow quantify the similarity between two images (sounds reasonable)
Use this metric to first classify the images into similar and non-similar.
Use this dataset to train a NN do to the same job.
I am not completely convinced if this is a good approach. Let's say that you created the initial classifier with SIFT features. You are then using this data to train a NN. But this data will definitely have a lot of wrong labels. Because if it didn't have a lot of wrong labels, what's stopping you from using your original SIFT based classifier as your final solution?
So if your SIFT based classification is good, why even train a NN? On the other hand, if it's bad, you are giving a lot of wrong labeled data to the NN for training. I think the latter is a probably a bad idea. I say probably because there is a possibility that maybe the wrong labels just encourage the NN to generalize better, but that would require a lot of data, I imagine.
Another way to look at this is, let's say that your initial classifier is 90% accurate. That's probably the upper limit of the performance for the NN that you are looking at when talking about training it with this data.
You said that the issue that you have with your first approach is that 'it's not a an intelligent, learning process'. I think it's the wrong approach to think that the former approach is always inferior to the latter. SIFT is a powerful tool that can solve a lot of problems without all the 'black-boxness' of an NN. If this problem can be solved with sufficient accuracy using SIFT, I think going after a learning based approach is not the way to go, because again, a learning based approach isn't necessarily superior.
However, if the SIFT approach isn't giving you good enough results, definitely start thinking of NN stuff, but at that point, using the "bad" method to label the data is probably a bad idea.
Also in relation, I think you could potentially be underestimating the amount of data that is needed for this. You mentioned data in the thousands, but that's honestly, not a lot. You would need a lot more, I think.
One way I would think about instead doing this -
Do SIFT keyponits detection for a sample reference image.
Manually filter out keypoints that does not belong to the things in the image that are invariant. That is, just take keypoints at the locations in the image that is guaranteed (or very likely) to be always present.
When you get a new image, compute the keypoints and do matching with the reference image.
Set some threshold of the ratio of good matches to the total number of matches.
Depending on your application, this might give you good enough results.
If not, and if you really want your solution to be NN based, I would say you need to manually label the dataset as opposed to using SIFT.

Do Neuronal networks getting slow in adaption after a lot of training?

I am a beginner in the neuronal network field and I want to understand a certain statement. A friend said that a neuronal network gets slower after you fit a lot of data in.
Right now, I just did the coursera ML course from androw ng. There, I implemented backpropagation. I thought it just adaptes the model related to the expected output by using different types of calculations. Nevertheless, it was not like the history was used to adapt the model. Just the current state of the neurons were checked and their weight were adapted backwards in combination with regularisation.
Is my assumption correct or am I wrong? Are there some libraries that use history data that could result in a slowly adapting model after a certain amount of training?
I want to use a simple neuronal network for reinforcement learning and I want to get an idea if I need to reset my model if the target environment changes for some reason. Otherwise my model would be slower and slower in adaption after time.
Thanks for any links and explanations in advanced!
As you have said, neural networks adapt by modifying their weights during the backpropagation step. Modifying these weights will not be slower as the training goes on since the number of steps to modify these weights will always remain the same. The amount of steps needed to run an example through your model will also remain the same, therefore not slowing down your network according to the amount of examples you fed it during training.
However, you can decide to change your learning rate during your training (generally decreasing it as epochs go on). According to the way the learning rate of your model evolves, the weights will be modified in a different manner, generally resulting in a smaller difference each epoch.

How to build a good training data set for machine learning and predictions?

I have a school project to make a program that uses the Weka tools to make predictions on football (soccer) games.
Since the algorithms are already there (the J48 algorithm), I need just the data. I found a website that offers football game data for free and I tried it in Weka but the predictions were pretty bad so I assume my data is not structured properly.
I need to extract the data from my source and format it another way in order to make new attributes and classes for my model. Does anyone know of a course/tutorial/guide on how to properly create your attributes and classes for machine learning predictions? Is there a standard that describes the best way of choosing the attributes of a data set for training a machine learning algorithm? What's the approach on this?
here's an example of the data that I have at the moment: http://www.football-data.co.uk/mmz4281/1516/E0.csv
and here is what the columns mean: http://www.football-data.co.uk/notes.txt
The problem may be that the data set you have is too small. Suppose you have ten variables and each variable has a range of 10 values. There are 10^10 possible configurations of these variables. It is unlikely your data set will be this large let alone cover all of the possible configurations. The trick is to narrow down the variables to the most relevant to avoid this large potential search space.
A second problem is that certain combinations of variables may be more significant than others.
The J48 algorithm attempts to to find the most relevant variable using entropy at each level in the tree. each path through the tree can be thought of as an AND condition: V1==a & V2==b ...
This covers the significance due to joint interactions. But what if the outcome is a result of A&B&C OR W&X&Y? The J48 algorithm will find only one and it will be the one where the the first variable selected will have the most overall significance when considered alone.
So, to answer your question, you need to not only find a training set which will cover the most common variable configurations in the "general" population but find an algorithm which will faithfully represent these training cases. Faithful meaning it will generally apply to unseen cases.
It's not an easy task. Many people and much money are involved in sports betting. If it were as easy as selecting the proper training set, you can be sure it would have been found by now.
EDIT:
It was asked in the comments how to you find the proper algorithm. The answer is the same way you find a needle in a haystack. There is no set rule. You may be lucky and stumble across it but in a large search space you won't ever know if you have. This is the same problem as finding the optimum point in a very convoluted search space.
A short-term answer is to
Think about what the algorithm can really accomplish. The J48 (and similar) algorithms are best suited for classification where the influence of the variables on the result are well known and follow a hierarchy. Flower classification is one example where it will likely excel.
Check the model against the training set. If it does poorly with the training set then it will likely have poor performance with unseen data. In general, you should expect the model to performance against the training to exceed the performance against unseen data.
The algorithm needs to be tested with data it has never seen. Testing against the training set, while a quick elimination test, will likely lead to overconfidence.
Reserve some of your data for testing. Weka provides a way to do this. The best case scenario would be to build the model on all cases except one (Leave On Out Approach) then see how the model performs on the average with these.
But this assumes the data at hand are not in some way biased.
A second pitfall is to let the test results bias the way you build the model.For example, trying different models parameters until you get an acceptable test response. With J48 it's not easy to allow this bias to creep in but if it did then you have just used your test set as an auxiliary training set.
Continue collecting more data; testing as long as possible. Even after all of the above, you still won't know how useful the algorithm is unless you can observe its performance against future cases. When what appears to be a good model starts behaving poorly then it's time to go back to the drawing board.
Surprisingly, there are a large number of fields (mostly in the soft sciences) which fail to see the need to verify the model with future data. But this is a matter better discussed elsewhere.
This may not be the answer you are looking for but it is the way things are.
In summary,
The training data set should cover the 'significant' variable configurations
You should verify the model against unseen data
Identifying (1) and doing (2) are the tricky bits. There is no cut-and-dried recipe to follow.

Random forest algorithms able to switch data sets

I'm curious as to whether research been done into random forests that combine unsupervised with supervised learning in a way allowing a single algorithm to find patterns in, and work with, multiple different data sets. I have googled every possible way to find research on this, and have come up empty. Can anyone point me in the right direction?
Note: I have already asked this question in the Data Sciences forum, but it's basically a dead forum so I came here.
(also read the comments and will incorporate the content in my answer)
From what I read between the lines is that you want to use Deep networks in a transfer learning setting. However, this would not be based on decision trees.
http://jmlr.csail.mit.edu/proceedings/papers/v27/mesnil12a/mesnil12a.pdf
There are many elements in your question:
1.) Machine learning algorithms, in general, don't care about the source of your data set. So basically you can feed the learning algorithms 20 different data sets and it will use all of them. However, the data should have the same underlying concept (except in the transfer learning case see below). This means: if you combine cats/dogs data with bills data this will not work or make it much harder for the algorithms. At least all input features need to be identical (exceptions exists), e.g, it is hard to combine images with text.
2.) labeled/unlabeled: Two important terms: a data set is a set of data points with a fixed number of dimensions. Datapoint i might be described as {Xi1,....Xin} where each Xi might for example be a pixel. A label Yi is from another domain, e.g., cats and dogs
3.) unsupervised learning data without any labels. (I have the gut feeling that this is not what you want.
4.) semi-supervised learning: The idea is basically that you combine data where you have labels with data without labels. Basically you have a set of images labeled as cats and dogs {Xi1,..,Xin,Yi} and a second set which contains images with cats/dogs but no labels {Xj1,..,Xjn}. The algorithm can use this information to build better classifiers as the unlabeld data provide information on how images look in general.
3.) transfer learning (I think this come closest to what you want). The Idea is that you provide a data set of cats and dogs and learn a classifier. Afterwards you want to train the classifier with images of cats/dogs/hamster. The training does not need to start from scratch but can use the cats/dogs classifier to converge much faster
4.) feature generation / feature construction The idea is that the algoritm learns features like "eyes". This features are used in the next step to learn the classifier. I'm mainly aware of this in the context of deep learning. Where the algoritm learns in the first step concepts like edges and constructs increasingly complex features like faces cats intolerant it can describe things like "the man on the elephant. This combined with transfer learning is probably what you want. However deep learning is based on Neural networks besides a few exceptions.
5.) outlier detection you provide a data set of cats/dogs as known images. When you provide the cats/dogs/hamster classifier. The classifier tells you that it has never seen something like a hamster before.
6.) active learning The idea is that you don't provide labels for all examples (Data points) beforehand, but that the algorithms asks you to label certain data points. This way you need to label much less data.

Use Azure Machine learning to detect symbol within an image

4 years ago I posted this question and got a few answers that were unfortunately outside my skill level. I just attended a build tour conference where they spoke about machine learning and this got me thinking of the possibility of using ML as a solution to my problem. i found this on the azure site but i dont think it will help me because its scope is pretty narrow.
Here is what i am trying to achieve:
i have a source image:
and i want to which one of the following symbols (if any) are contained in the image above:
the compare needs to support minor distortion, scaling, color differences, rotation, and brightness differences.
the number of symbols to match will ultimately at least be greater than 100.
is ML a good tool to solve this problem? if so, any starting tips?
As far as I know, Project Oxford (MS Azure CV API) wouldn't be suitable for your task. Their APIs are very focused to Face related tasks (detection, verification, etc), OCR and Image description. And apparently you can't extend their models or train new ones from the existing ones.
However, even though I don't know an out of the box solution for your object detection problem; there are easy enough approaches that you could try and that would give you some start point results.
For instance, here is a naive method you could use:
1) Create your dataset:
This is probably the more tedious step and paradoxically a crucial one. I will assume you have a good amount of images to work with. What would you need to do is to pick a fixed window size and extract positive and negative examples.
If some of the images in your dataset are in different sizes you would need to rescale them to a common size. You don't need to get too crazy about the size, probably 30x30 images would be more than enough. To make things easier I would turn the images to gray scale too.
2) Pick a classification algorithm and train it:
There is an awful amount of classification algorithms out there. But if you are new to machine learning I will pick the one I would understand the most. Keeping that in mind, I would check out logistic regression which give decent results, it's easy enough for starters and have a lot of libraries and tutorials. For instance, this one or this one. At first I would say to focus in a binary classification problem (like if there is an UD logo in the picture or not) and when you master that one you can jump to the multi-class case. There are resources for that too or you can always have several models one per logo and run this recipe for each one separately.
To train your model, you just need to read the images generated in the step 1 and turn them into a vector and label them accordingly. That would be the dataset that will feed your model. If you are using images in gray scale, then each position in the vector would correspond to a pixel value in the range 0-255. Depending on the algorithm you might need to rescale those values to the range [0-1] (this is because some algorithms perform better with values in that range). Notice that rescaling the range in this case is fairly easy (new_value = value/255).
You also need to split your dataset, reserving some examples for training, a subset for validation and another one for testing. Again, there are different ways to do this, but I'm keeping this answer as naive as possible.
3) Perform the detection:
So now let's start the fun part. Given any image you want to run your model and produce coordinates in the picture where there is a logo. There are different ways to do this and I will describe one that probably is not the best nor the more efficient, but it's easier to develop in my opinion.
You are going to scan the picture, extracting the pixels in a "window", rescaling those pixels to the size you selected in step 1 and then feed them to your model.
If the model give you a positive answer then you mark that window in the original image. Since the logo might appear in different scales you need to repeat this process with different window sizes. You also would need to tweak the amount of space between windows.
4) Rinse and repeat:
At the first iteration it's very likely that you will get a lot of false positives. Then you need to take those as negative examples and retrain your model. This would be an iterative process and hopefully on each iteration you will have less and less false positives and fewer false negatives.
Once you are reasonable happy with your solution, you might want to improve it. You might want to try other classification algorithms like SVM or Deep Learning Artificial Neural Networks, or to try better object detection frameworks like Viola-Jones. Also, you will probably need to use crossvalidation to compare all your solutions (you can actually use crossvalidation from the beginning). By this moment I bet you would be confident enough that you would like to use OpenCV or another ready to use framework in which case you will have a fair understanding of what is going on under the hood.
Also you could just disregard all this answer and go for an OpenCV object detection tutorial like this one. Or take another answer from another question like this one. Good luck!

Resources