I have an example of a case in the application to create a numeric pin pattern that should not have a consecutive number and the same number of all.
Examples of PIN patterns that are rejected are as follows:
123456,
234567,
345678,
654321,
765432,
876543,
000000 and other similar PIN patterns.
var rejectedPinList: [[Int]] = [[Int]]()
var consecutiveNumber = [0,1,2,3,4,5,6,7,8,9,0]
func incrementNumber(currentIndex: Int) -> [Int] {
var rejectedPinPattern: [Int] = [Int]()
for currentIndex in stride(from: currentIndex, to: currentIndex+6, by: 1){
rejectedPinPattern.append(consecutiveNumber[currentIndex])
}
return rejectedPinPattern
}
func decrementNumber(currentIndex: Int) -> [Int] {
var rejectedPinPattern: [Int] = [Int]()
for currentIndex in stride(from: currentIndex, to: currentIndex-6, by: -1){
rejectedPinPattern.append(consecutiveNumber[currentIndex])
}
return rejectedPinPattern
}
func constantNumber(currentIndex: Int) -> [Int] {
var rejectedPinPattern: [Int] = [Int]()
for _ in currentIndex...currentIndex+6 {
rejectedPinPattern.append(consecutiveNumber[currentIndex])
}
return rejectedPinPattern
}
for number in consecutiveNumber {
rejectedPinList.append(constantNumber(currentIndex: number))
if number < 5 {
rejectedPinList.append(incrementNumber(currentIndex: number))
} else if number > 5 {
rejectedPinList.append(decrementNumber(currentIndex: number))
} else {
rejectedPinList.append(incrementNumber(currentIndex: number))
rejectedPinList.append(decrementNumber(currentIndex: number))
}
}
func inputPin(pin: [Int]) {
if rejectedPinList.contains(pin) {
print("Pin Rejected!")
} else {
}
}
inputPin(pin: [8,7,6,5,4,3]) // Should be Rejected!
What I'm looking for is to be more effective than the algorithm code I made above in generating consecutive & same numbers. Because in my opinion, the code I made is too long and not very effective and may be wasteful. Thank you!
Instead of computing a list of all invalid pins in advance, you can verify the given pin by computing the set of all differences of adjacent digits. A pin is invalid if the set consists of -1, 0, or +1 only:
func validatePIN(_ pin: [Int]) -> Bool {
if pin.isEmpty { return false }
let diffs = Set(zip(pin, pin.dropFirst()).map(-))
return diffs.count != 1 || abs(diffs.first!) > 1
}
As the question was to improve efficiency, the approach below this implements the some initial checks before it starts looping through the array to minimise the total number of iterations/time.
func validatePin(_ pin: [Int], minLength: Int = 2 ) -> Bool {
guard pin.count >= max(minLength, 2) else {return false}
guard Set(pin).count != 1 else {return false} //all the same
guard abs(pin.first! - pin.last!) == pin.count - 1 else {return true} //can't be a sequence
let delta = pin.first! < pin.last! ? -1 : 1
for index in (0...pin.count - 2) {
if pin[index] - pin[index + 1] != delta {return true} //items not sequential
}
return false //items are sequential
}
I think this should do what you want. It checks to see if there are any consecutive digits that have an absolute difference that isn't 1. If so then the PIN may be valid (pending a check for repeated digits).
To check for repeated digits, the digits are added to an NSCountedSet. If the count for any digit is the same as the number of digits then the PIN is invalid.
func validatePIN(_ candidate: [Int]) -> Bool {
guard !candidate.isEmpty else {
return false
}
let digitSet = NSCountedSet()
var possiblyValid = false
var lastSign: Int?
for i in 0..<candidate.count {
digitSet.add(candidate[i])
if i > 0 && !possiblyValid {
let difference = candidate[i]-candidate[i-1]
let thisSign = difference.signum()
if abs(difference) != 1 {
possiblyValid = true
} else if let sign = lastSign, sign != thisSign {
possiblyValid = true
}
lastSign = thisSign
}
}
for digit in digitSet {
if digitSet.count(for: digit) == candidate.count {
return false
}
}
return possiblyValid
}
print(validatePIN([]))
print(validatePIN([8,7,6,5,3,3]))
print(validatePIN([8,7,6,5,4,3]))
print(validatePIN([2,2,2,2,2,2]))
print(validatePIN([1,2,3,4,3,2]))
gives:
false
true
false
false
true
You could also add a test for minimum length in the guard statement
Thank you all for helping me. I also improvise my algorithm. Here's my code:
func validatePIN(_ pin: [Int]) -> Bool {
if (pin.isEmpty == true) ||
(pin[0] < 5 && pin == Array(pin[0]...pin[0]+5)) ||
(pin[0] > 5 && pin == Array(stride(from: pin[0], through: pin[0]-5, by: -1)) ||
(pin.allSatisfy({ $0 == pin[0] }))) { return false }; return true
}
Related
I have the following array:
var notebookCovers = ["cover1", "cover2", "cover3", "cover4", "cover4", "cover6", "cover7", "cover8", "cover9", "cover10"]
and a UIButton that when it's pressed it generates a new UIImage with one of the elements of the array.
What I need to do is every time the button is tapped to generate random but unique element from the array (without repeating the elements) until they've all been selected and then restart the array again.
So far, I have it getting a random element but it's repeated and I cannot figure out how to it so it gets a unique image every time
func createNewNotebook() {
let newNotebook = Notebook()
let randomInt = randomNumber()
newNotebook.coverImageString = notebookCovers[randomInt]
notebooks.insert(newNotebook, at: 0)
collectionView.reloadData()
}
func randomNumber() -> Int {
var previousNumber = arc4random_uniform(UInt32(notebookCovers.count))
var randomNumber = arc4random_uniform(UInt32(notebookCovers.count - 1))
notebookCovers.shuffle()
if randomNumber == previousNumber {
randomNumber = UInt32(notebookCovers.count - 1)
}
previousNumber = randomNumber
return Int(randomNumber)
}
Set is a collection type that holds unique elements. Converting your notebooks array to Set also lets you take advantage of its randomElement function
var aSet = Set(notebooks)
let element = aSet.randomElement()
aSet.remove(element)
Copy the array. Shuffle the copy. Now just keep removing the first element until the copy is empty. When it is empty, start over.
Example:
let arr = [1,2,3,4,5]
var copy = [Int]()
for _ in 1...30 { // just to demonstrate what happens
if copy.isEmpty { copy = arr; copy.shuffle() }
let element = copy.removeFirst() ; print(element, terminator:" ")
}
// 4 2 3 5 1 1 5 3 2 4 4 1 2 3 5 1 4 5 2 3 3 5 4 2 1 3 2 4 5 1
If you want to create a looping solution:
let originalSet = Set(arrayLiteral: "a","b","c")
var selectableSet = originalSet
func repeatingRandomObject() -> String {
if selectableSet.isEmpty {
selectableSet = originalSet
}
return selectableSet.remove(selectableSet.randomElement()!)!
}
force unwrapping is kind of safe here, since we know that the result will never be nil. If you don't want to force unwrap:
let originalSet = Set(arrayLiteral: "a","b","c")
var selectableSet = originalSet
func repeatingRandomObject() -> String? {
if selectableSet.isEmpty {
selectableSet = originalSet
}
guard let randomElement = selectableSet.randomElement() else { return nil }
return selectableSet.remove(randomElement)
}
You can try something like this,
var notebookCovers = ["cover1", "cover2", "cover3", "cover4", "cover4", "cover6", "cover7", "cover8", "cover9", "cover10"]
var tappedNotebooks: [String] = []
func tapping() {
let notebook = notebookCovers[Int.random(in: 0...notebookCovers.count - 1)]
if tappedNotebooks.contains(notebook){
print("already exists trying again!")
tapping()
} else {
tappedNotebooks.append(notebook)
print("appended", notebook)
}
if tappedNotebooks == notebookCovers {
tappedNotebooks = []
print("cleared Tapped notebooks")
}
}
It is possible with shuffle:
struct AnantShuffler<Base: MutableCollection> {
private var collection: Base
private var index: Base.Index
public init?(collection: Base) {
guard !collection.isEmpty else {
return nil
}
self.collection = collection
self.index = collection.startIndex
}
public mutating func next() -> Base.Iterator.Element {
let result = collection[index]
collection.formIndex(after: &index)
if index == collection.endIndex {
collection.shuffle()
index = collection.startIndex
}
return result
}
}
fileprivate extension MutableCollection {
/// Shuffles the contents of this collection.
mutating func shuffle() {
let c = count
guard c > 1 else { return }
for (firstUnshuffled, unshuffledCount) in zip(indices, stride(from: c, to: 1, by: -1)) {
let d: Int = numericCast(arc4random_uniform(numericCast(unshuffledCount)))
let i = index(firstUnshuffled, offsetBy: d)
swapAt(firstUnshuffled, i)
}
}
}
Use:
let shuffler = AnantShuffler(collection: ["c1","c2","c3"].shuffled())
shuffler?.next()
I am writing a puzzle game for an IOS. In my code I need to fill an array with some random (and non-random numbers) that will represent the main data structure.
func Random(r : Range<Int>) -> Int {
return Int(arc4random_uniform(UInt32(r.endIndex - r.startIndex))) + r.startIndex
} // function to generate random number
var arrWithColors = [Int]() // array that will hold the numbers
//function to that check if an array contains a number in a range already
func checkForNumberInArrayWithRange(r: Range <Int>, n: Int ) -> Bool {
for i in r.startIndex..<r.endIndex {
if arrWithColors[i] == n { return true }
}
return false
}
// here is the main function where i keep getting stuck. Out of let's say five times it would only work 3 or even less.
func randHexWithTag() {
var rNumber : Int = Random(0...5)
for i in 0...5 {
while (true) {
rNumber = Random(0...5)
if !checkForNumberInArrayWithRange(0...5, n: rNumber) {
break
}
}
arrWithColors[i] = rNumber
}
arrWithColors[10] = arrWithColors[1]
for i in 6...11 {
while(true) {
rNumber = Random(0...5)
if ((rNumber == arrWithColors[0] && i == 9) || (rNumber == arrWithColors[2] && i == 11)) {
continue
}
if !checkForNumberInArrayWithRange(6...11, n: rNumber) {
break
}
}
if (i != 10) {
arrWithColors[i] = rNumber
}
}
arrWithColors[13] = arrWithColors[4]
for i in 12...17 {
while(true) {
rNumber = Random(0...5)
if (rNumber == arrWithColors[3] && i == 12) || (rNumber == arrWithColors[5] && i == 14) {
continue
}
if !checkForNumberInArrayWithRange(12...17, n: rNumber) {
break
}
}
if (i != 13) {
arrWithColors[i] = rNumber
}
}
}
The above code will ALWAYS fail during the first call to checkForNumberInArrayWithRange on this line:
if arrWithColors[i] == n { return true }
That is because arrWithColors is empty, and index i is out of range
I am attempting to build an anagram checker for swift. This is my code. In case you don't know an anagram checker checks if two strings have the same characters in them but, order does not matter.
func checkForAnagram(#firstString: String, #secondString: String) -> Bool {
var firstStringArray: [Character] = []
var secondStringArray: [Character] = []
/* if case matters delete the next four lines
and make sure your variables are not constants */
var first = firstString
var second = secondString
first = first.lowercaseString
second = second.lowercaseString
for charactersOne in first {
firstStringArray += [charactersOne]
}
for charactersTwo in second {
secondStringArray += [charactersTwo]
}
if firstStringArray.count != secondStringArray.count {
return false
} else {
for elements in firstStringArray {
if secondStringArray.contains(elements){
return true
} else {
return false
}
}
}
}
var a = "Hello"
var b = "oellh"
var c = "World"
checkForAnagram(firstString: a, secondString: b)
I am getting an error message of.
'[Character]' does not have a member 'contains'
The accepted answer is compact and elegant, but very inefficient if compared to other solutions.
I'll now propose and discuss the implementation of a few variants of anagram checker. To measure performance, I'll use the different variants to find the anagrams of a given word out of an array of 50,000+ words.
// Variant 1: Sorting of Character
// Measured time: 30.46 s
func anagramCheck1(a: String, b: String) -> Bool {
return a.characters.sorted() == b.characters.sorted()
}
This is essentially the solution of the accepted answer, written in Swift 3 syntax. It's very slow because Swift's String, unlike NSString, is based on Character, which handles Unicode characters properly.
A more efficient solution exploits the NSCountedSet class, which allows us to represent a string as a set of characters, each with its own count. Two strings are anagrams if they map to the same NSCountedSet.
Note: checking string lengths as a precondition makes the implementation always more efficient.
// Variant 2: NSCountedSet of Character
// Measured time: 4.81 s
func anagramCheck2(a: String, b: String) -> Bool {
guard a.characters.count == b.characters.count else { return false }
let aSet = NSCountedSet()
let bSet = NSCountedSet()
for c in a.characters {
aSet.add(c)
}
for c in b.characters {
bSet.add(c)
}
return aSet == bSet
}
Better but not excellent. Here, one of the "culprits" is the use of the native Swift Character type (from Swift's String). Moving back to good old Objective-C types (NSString and unichar) makes things more efficient.
// Variant 3: NSCountedSet of unichar
// Measured time: 1.31 s
func anagramCheck3(a: String, b: String) -> Bool {
let aString = a as NSString
let bString = b as NSString
let length = aString.length
guard length == bString.length else { return false }
let aSet = NSCountedSet()
let bSet = NSCountedSet()
for i in 0..<length {
aSet.add(aString.character(at: i))
bSet.add(bString.character(at: i))
}
return aSet == bSet
}
Using NSCountedSet is fine, but before we compare two NSCountedSet objects, we fully populate them. A useful alternative is to fully populate the NSCountedSet for only one of the two strings, and then, while we populate the NSCountedSet for the other string, we fail early if the other string contains a character that is not found in the NSCountedSet of the first string.
// Variant 4: NSCountedSet of unichar and early exit
// Measured time: 1.07 s
func anagramCheck4(a: String, b: String) -> Bool {
let aString = a as NSString
let bString = b as NSString
let length = aString.length
guard length == bString.length else { return false }
let aSet = NSCountedSet()
let bSet = NSCountedSet()
for i in 0..<length {
aSet.add(aString.character(at: i))
}
for i in 0..<length {
let c = bString.character(at: i)
if bSet.count(for: c) >= aSet.count(for: c) {
return false
}
bSet.add(c)
}
return true
}
This is about the best timing we are going to get (with Swift). However, for completeness, let me discuss one more variant of this kind.
The next alternative exploits a Swift Dictionary of type [unichar: Int] to store the number of repetitions for each character instead of NSCountedSet. It's slightly slower than the previous two variants, but we can reuse it later to obtain a faster implementation.
// Variant 5: counting repetitions with [unichar:Int]
// Measured time: 1.36
func anagramCheck5(a: String, b: String) -> Bool {
let aString = a as NSString
let bString = b as NSString
let length = aString.length
guard length == bString.length else { return false }
var aDic = [unichar:Int]()
var bDic = [unichar:Int]()
for i in 0..<length {
let c = aString.character(at: i)
aDic[c] = (aDic[c] ?? 0) + 1
}
for i in 0..<length {
let c = bString.character(at: i)
let count = (bDic[c] ?? 0) + 1
if count > aDic[c] ?? 0 {
return false
}
bDic[c] = count
}
return true
}
Note that a vanilla Objective-C implementation using NSCountedSet, corresponding to Variant 3, is faster than all the previous versions by a rather large margin.
// Variant 6: Objective-C and NSCountedSet
// Measured time: 0.65 s
- (BOOL)anagramChecker:(NSString *)a with:(NSString *)b {
if (a.length != b.length) {
return NO;
}
NSCountedSet *aSet = [[NSCountedSet alloc] init];
NSCountedSet *bSet = [[NSCountedSet alloc] init];
for (int i = 0; i < a.length; i++) {
[aSet addObject:#([a characterAtIndex:i])];
[bSet addObject:#([b characterAtIndex:i])];
}
return [aSet isEqual:bSet];
}
Another way we can improve upon the previous attempts is to observe that, if we need to find the anagram of a given word, we might as well consider that word as fixed, and thus we could build the corresponding structure (NSCountedSet, Dictionary, ...) for that word only once.
// Finding all the anagrams of word in words
// Variant 7: counting repetitions with [unichar:Int]
// Measured time: 0.58 s
func anagrams(word: String, from words: [String]) -> [String] {
let anagrammedWord = word as NSString
let length = anagrammedWord.length
var aDic = [unichar:Int]()
for i in 0..<length {
let c = anagrammedWord.character(at: i)
aDic[c] = (aDic[c] ?? 0) + 1
}
let foundWords = words.filter {
let string = $0 as NSString
guard length == string.length else { return false }
var bDic = [unichar:Int]()
for i in 0..<length {
let c = string.character(at: i)
let count = (bDic[c] ?? 0) + 1
if count > aDic[c] ?? 0 {
return false
}
bDic[c] = count
}
return true
}
return foundWords
}
Now, in the previous variant we have counted with a [unichar:Int] Dictionary. This proves slightly more efficient than using an NSCountedSet of unichar, either with early exit (0.60 s) or without (0.87 s).
You should try
func checkForAnagram(firstString firstString: String, secondString: String) -> Bool {
return firstString.lowercaseString.characters.sort() == secondString.lowercaseString.characters.sort()
}
func checkAnagrams(str1: String, str2: String) -> Bool {
guard str1.count == str2.count else { return false }
var dictionary = Dictionary<Character, Int>()
for index in 0..<str1.count {
let value1 = str1[str1.index(str1.startIndex, offsetBy: index)]
let value2 = str2[str2.index(str2.startIndex, offsetBy: index)]
dictionary[value1] = (dictionary[value1] ?? 0) + 1
dictionary[value2] = (dictionary[value2] ?? 0) - 1
}
return !dictionary.contains(where: {(_, value) in
return value != 0
})
}
Time complexity - O(n)
// Make sure name your variables correctly so you won't confuse
// Mutate the constants parameter, lowercase to handle capital letters and the sorted them to compare both. Finally check is there are equal return true or false.
func anagram(str1: String, srt2: String)->Bool{
let string1 = str1.lowercased().sorted()
let string2 = srt2.lowercased().sorted()
if string1 == string2 {
return true
}
return false
}
// This answer also would work
// Convert your parameters on Array, then sorted them and compare them
func ana(str1: String, str2: String)->Bool{
let a = Array(str1)
let b = Array(str2)
if a.sorted() == b.sorted() {
return true
}
return false
}
Don't forget whitespaces
func isAnagram(_ stringOne: String, stringTwo: String) -> Bool {
return stringOne.lowercased().sorted().filter { $0 != " "} stringTwo.lowercased().sorted().filter { $0 != " "}
}
Swift 4.1 Function will give you 3 questions answer for Anagram :-
1. Input Strings (a,b) are Anagram ? //Bool
2. If not an Anagram then number of count require to change Characters in strings(a,b) to make them anagram ? // Int
3. If not an Anagram then list of Characters needs to be change in strings(a,b) to make them anagram ? // [Character]
STEP 1:- Copy and Paste below function in to your required class:-
//MARK:- Anagram checker
func anagramChecker(a:String,b:String) -> (Bool,Int,[Character]) {
var aCharacters = Array(a)
var bCharacters = Array(b)
var count = 0
var isAnagram = true
var replacementRequiredWords:[Character] = [Character]()
if aCharacters.count == bCharacters.count {
let listA = aCharacters.filter { !bCharacters.contains($0) }
for i in 0 ..< listA.count {
if !replacementRequiredWords.contains(listA[i]) {
count = count + 1
replacementRequiredWords.append(listA[i])
isAnagram = false
}
}
let listB = bCharacters.filter { !aCharacters.contains($0) }
for i in 0 ..< listB.count {
if !replacementRequiredWords.contains(listB[i]) {
count = count + 1
replacementRequiredWords.append(listB[i])
isAnagram = false
}
}
}else{
//cant be an anagram
count = -1
}
return (isAnagram,count,replacementRequiredWords)
}
STEP 2 :- Make two Input Strings for test
// Input Strings
var a = "aeb"
var b = "abs"
STEP 3:- Print results :-
print("isAnagram : \(isAnagram(a: a, b: b).0)")
print("number of count require to change strings in anagram : \(isAnagram(a: a, b: b).1)")//-1 will come in case of cant be a Anagram
print("list of Characters needs to be change : \(isAnagram(a: a, b: b).2)")
Results of above exercise:-
isAnagram : false
number of count require to change strings in anagram : 2
list of Characters needs to be change : ["e", "s"]
Hope this 10 minutes exercise will give some support to my Swift
family for solving Anagram related problems easily. :)
We can use dictionary to construct a new data structure container. Then compare the value by key/character of the string.
func anagram(str1: String, str2 : String) -> Bool {
var dict1 = [Character: Int]()
var dict2 = [Character:Int]()
for i in str1 {
if let count = dict1[i] {
dict1[i] = count + 1
} else {
dict1[i] = 1
}
}
for j in str2 {
if let count = dict2[j] {
dict2[j] = count + 1
} else {
dict2[j] = 1
}
}
return dict1 == dict2 ? true : false
}
// input -> "anna", "aann"
// The count will look like:
// ["a": 2, "n": 2] & ["a": 2, "n": 2]
// then return true
Another easy that I just realise doing an Anagram function in Swift 5.X
func checkForAnagram(firstString firstString: String, secondString: String) -> Bool {
return !firstString.isEmpty && firstString.sorted() == secondString.sorted()
}
class Solution {
func isAnagram(_ s: String, _ t: String) -> Bool {
guard s.count == t.count else { return false }
let dictS = s.reduce(into: [Character: Int]()) { $0[$1, default: 0] += 1 }
let dictT = t.reduce(into: [Character: Int]()) { $0[$1, default: 0] += 1 }
for letter in s {
if let count = dictS[letter] {
guard count == dictT[letter] else { return false }
}
}
return true
}
}
Check two strings are anagram using inout method in Swift
func checkAnagramString(str1: inout String, str2: inout String)-> Bool{
var result:Bool = false
str1 = str1.lowercased().trimmingCharacters(in: .whitespace)
str2 = str2.lowercased().trimmingCharacters(in: .whitespaces)
if (str1.count != str2.count) {
return result
}
for c in str1 {
if str2.contains(c){
result = true
}
else{
result = false
return result
}
}
return result
}
Call function to check strings are anagram or not
var str1 = "tommarvoloriddle"
var str2 = "iamlordvoldemort"
print(checkAnagramString(str1: &str1, str2: &str2)) //Output = true.
func isAnagram(word1: String, word2: String) -> Bool {
let set1 = Set(word1)
let set2 = Set(word2)
return set1 == set2
}
or
func isAnagram(word1: String,word2: String) -> Bool {
return word1.lowercased().sorted() == word2.lowercased().sorted()
}
I want to make the computer generate predefined set of numbers one-by-one. How is it possible in Swift? Is it possible using arrays?
For example: I want to generate [1,2,3,4] in that same order one-by-one. By generate I mean to show up like how random numbers show up when you type in arcrandom_uniform().
Example:
var randomNumber = [1,2,3,4,5]
var guessInt = guess.text.toInt()
Then when I type ..
if Int(randomNumber) == guessInt {
//conditions
}
The error shows as : Cannot assgn to the result of ths expresson
Sometimes I get the error as Int' is not convertible to '[Int]' swift
The code won't work! Help ?
Here's the code for #David Skrundz :
` #IBAction func guessButton(sender: AnyObject) {
var randomNumber = [1,2,3,4,7,8,9,5]
var guessInt = guess.text.toInt()
func generator() -> () -> Int {
var currentIndex = 0
let array = Array(1...5)
func generate() -> Int {
let value = array[currentIndex++]
if currentIndex >= array.count {
currentIndex = 0
}
return value
}
return generate
}
let gen = generator()
gen() // Returns 1
gen() // Returns 2
gen() // Returns 3
gen() // Returns 4
gen() // Returns 1
let answer = gen()
if answer == guessInt {
resultLabel.text = "Bingoo..! "}
else {
resultLabel.text = "Oh such a bad guesser! It was a \(answer)"
}
println(answer)
}
`
Any idea how to fix this code the problem mentioned below ! ? Please !
You may want the range operator:
for index in 1...5 {
println("\(index)")
}
If you want to generate the next element in a repeating sequence, you could use
func generator() -> () -> Int {
var currentIndex = 0
let array = Array(1...4)
func generate() -> Int {
let value = array[currentIndex++]
if currentIndex >= array.count {
currentIndex = 0
}
return value
}
return generate
}
And to use it:
let gen = generator()
gen() // Returns 1
gen() // Returns 2
gen() // Returns 3
gen() // Returns 4
gen() // Returns 1
I'm a beginner programmer learning Swift and made a basic prime number checker. No matter what it will only give one result, instead of changing based on wether or not the number is prime. Any help would be appreciated.
#IBAction func primeCheck(sender: AnyObject) {
var numberInt = number.text.toInt()
var isPrime = true
if number != nil {
if numberInt == 1 {
isPrime = false
}
if numberInt != 1 {
for var i = 2; i < numberInt; i++ {
if numberInt! % i == 0 {
isPrime = false
} else {
isPrime = true
}
}
}
}
if isPrime == true {
result.text = "\(numberInt!) is a prime number!"
} else {
result.text = "\(numberInt!) is not a prime number!"
}
}
I have another possible solution. At first I divide by two because it cannot be a prime number. Then you loop until the number is prime or the number divided by two is less than the divider.
#IBAction func primeCheck(sender: AnyObject) {
var numberInt = number.text.toInt()
var isPrime = true
var divider = 3
if number < 2 || (number != 2 && number % 2 == 0) {
isPrime = false
}
// you only have to check to half of the number
while(isPrime == true && divider < number / 2){
isPrime = number % divider != 0
divider += 2
}
if isPrime == true {
result.text = "\(numberInt!) is a prime number!"
} else {
result.text = "\(numberInt!) is not a prime number!"
}
}
The error in your logic comes in this section:
if numberInt! % i == 0 {
isPrime = false
} else {
isPrime = true
}
At the top of your function, you initialize isPrime to be true, so in your loop you only need to look for cases that prove the number is not prime. You don't ever need to set isPrime = true again, so just drop the else condition:
if numberInt! % i == 0 {
isPrime = false
}
You actually have two functions here. One to check if a number is prime and the other to display the result. Separating these makes everything much easier to manage.
// function to check primality and return a bool
// note that this can only accept a non optional Int so there is
// no need to check whether it is valid etc...
func checkNumberIsPrime(number: Int) -> Bool {
// get rid of trivial examples to improve the speed later
if number == 2 || number == 3 {
return true
}
if number <= 1 || number%2 == 0 {
return false
}
// square root and round up to the nearest int
let squareRoot: Int = Int(ceil(sqrtf(Float(number))))
// no need to check anything above sqrt of number
// any factor above the square root will have a cofactor
// below the square root.
// don't need to check even numbers because we already checked for 2
// half the numbers checked = twice as fast :-D
for i in stride(from: 3, to: squareRoot, by: 2) {
if number % i == 0 {
return false
}
}
return true
}
// function on the button. Run the check and display results.
#IBAction func primeCheck(sender: AnyObject) {
let numberInt? = numberTextField.text.toInt() // don't call a text field "number", it's just confusing.
if let actualNumber = numberInt {
if checkNumberIsPrime(actualNumber) {
resultLabel.text = "\(actualNumber) is a prime number!" // don't call a label "result" call it "resultLabel". Don't confuse things.
} else {
resultLabel.text = "\(actualNumber) is not a prime number!"
}
} else {
resultLabel.text = "'\(numberTextField.text)' is not a number!"
}
}
It makes it all much easy to read and maintain.
You have to break out of the loop after you find that the number is divisble by another number. Also for prime check you only have to check the divisibility till the square root of the number.
You can also use optional binding to extract numberInt and check for nil. That's the swift way.
#IBAction func primeCheck(sender: AnyObject) {
var isPrime = true
if let numberInt = number.text.toInt() {
if numberInt == 1 {
isPrime = false /
}
else // Add else because you dont have to execute code below if number is 1
{
if numberInt != 1 {
for var i = 2; i * i <= numberInt; i++ { // Only check till squareroot
if numberInt % i == 0 {
isPrime = false
break // Break out of loop if number is divisible.
} // Don't need else condition because isPrime is initialised as true.
}
}
}
if isPrime {
result.text = "\(numberInt) is a prime number!"
} else {
result.text = "\(numberInt) is not a prime number!"
}
}
}
Reason for square root check : Why do we check up to the square root of a prime number to determine if it is prime?
You can refine the code further by refactoring the prime check into a separate function.
func isPrime(number:Int) -> Bool
{
if number == 1 {
return false
}
else
{
if number != 1 {
for var i = 2; i * i <= numberInt; i++ {
if numberInt % i == 0 {
return false
}
}
}
}
return true
}
#IBAction func primeCheck(sender: AnyObject) {
if let numberInt = number.text.toInt() {
if isPrime(numberInt) {
result.text = "\(numberInt) is a prime number!"
} else {
result.text = "\(numberInt) is not a prime number!"
}
}
}
Well i don't know about swift, but maybe this is wrecking your code:
if numberInt! <<
To do a faster algorithm you could just search for divisors from 2 to sqrt(numberInt). (Theorem)