Perceptron : Weight for each sample data , or one common weight - machine-learning

With Perception learning, I am really confused on initializing and updating weight. If I have a sample data that contains 2 inputs x0 and x1 and I have 80 rows of these 2 inputs, hence 80x2 matrix.
Do I need to initialize weight as a matrix of 80x2 or just 2 values w0 and w1 ? Is final goal of perceptron learning is to find 2 weights w0 and w1 which should fit for all 80 input sample rows ?
I have following code and my errors never get to 0, despite going up to 10,000 iterations.
x=input matrix of 80x2
y=output matrix of 80x1
n = number of iterations
w=[0.1,0.1]
learningRate = 0.1
for i in range(n):
expectedT = y.transpose();
xT = x.transpose()
prediction = np.dot (w,xT)
for i in range (len(x)):
if prediction[i] >= 0:
ypred[i] = 1
else:
ypred[i] = 0
error = expectedT - ypred
# updating the weights
w = np.add(w,learningRate*(np.dot(error,x)))
globalError = globalError + np.square(error)

For each feature you will have one weight. Thus you have two features and two weights. It also helps to introduce a bias which adds another weight. For more information about bias check this Role of Bias in Neural Networks. The weights indeed should learn how to fit the sample data best. Depending on the data this can mean that you will never reach error of 0. For example a single layer perceptron can not learn an XOR gate when using a monotonic activation function. (solving XOR with single layer perceptron).
For your example I would recommend two things. Introducing a bias and stopping the training when the error is below a certain threshold or if error is 0 for example.
I completed your example to learn a logical AND gate:
# AND input and output
x = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([0,1,1,1])
n = 1000
w=[0.1,0.1,0.1]
learningRate = 0.01
globalError = 0
def predict(X):
prediction = np.dot(w[0:2],X) + w[2]
ypred = np.zeros(len(y))
for i in range (len(y)):
if prediction[i] >= 0:
ypred[i] = 1
else:
ypred[i] = 0
return ypred
for i in range(n):
expectedT = y.transpose();
xT = x.transpose()
ypred = predict(xT)
error = expectedT - ypred
if sum(error) == 0:
break
# updating the weights
w[0:2] = np.add(w[0:2],learningRate*(np.dot(error,x)))
w[2] += learningRate*sum(error)
globalError = globalError + np.square(error)
After the training the error is 0
print(error)
# [0. 0. 0. 0.]
And the weights are as follows
print(w)
#[0.1, 0.1, -0.00999999999999999]
The perceptron can be used now as AND gate:
predict(x.transpose())
#array([0., 1., 1., 1.])
Hope that helps

Related

Loss for Multi-label Classification

I am working on a multi-label classification problem. My gt labels are of shape 14 x 10 x 128, where 14 is the batch_size, 10 is the sequence_length, and 128 is the vector with values 1 if the item in sequence belongs to the object and 0 otherwise.
My output is also of same shape: 14 x 10 x 128. Since, my input sequence was of varying length I had to pad it to make it of fixed length 10. I'm trying to find the loss of the model as follows:
total_loss = 0.0
unpadded_seq_lengths = [3, 4, 5, 7, 9, 3, 2, 8, 5, 3, 5, 7, 7, ...] # true lengths of sequences
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
criterion = nn.BCEWithLogitsLoss()
for data in training_dataloader:
optimizer.zero_grad()
# shape of input 14 x 10 x 128
output = model(data)
batch_loss = 0.0
for batch_idx, sequence in enumerate(output):
# sequence shape is 10 x 128
true_seq_len = unpadded_seq_lengths[batch_idx]
# only keep unpadded gt and predicted labels since we don't want loss to be influenced by padded values
predicted_labels = sequence[:true_seq_len, :] # for example, 3 x 128
gt_labels = gt_labels_padded[batch_idx, :true_seq_len, :] # same shape as above, gt_labels_padded has shape 14 x 10 x 128
# loop through unpadded predicted and gt labels and calculate loss
for item_idx, predicted_labels_seq_item in enumerate(predicted_labels):
# predicted_labels_seq_item and gt_labels_seq_item are 1D vectors of length 128
gt_labels_seq_item = gt_labels[item_idx]
current_loss = criterion(predicted_labels_seq_item, gt_labels_seq_item)
total_loss += current_loss
batch_loss += current_loss
batch_loss.backward()
optimizer.step()
Can anybody please check to see if I'm calculating loss correctly. Thanks
Update:
Is this the correct approach for calculating accuracy metrics?
# batch size: 14
# seq length: 10
for epoch in range(10):
TP = FP = TN = FN = 0.
for x, y, mask in tr_dl:
# mask shape: (10,)
out = model(x) # out shape: (14, 10, 128)
y_pred = (torch.sigmoid(out) >= 0.5).float().type(torch.int64) # consider all predictions above 0.5 as 1, rest 0
y_pred = y_pred[mask] # y_pred shape: (14, 10, 10, 128)
y_labels = y[mask] # y_labels shape: (14, 10, 10, 128)
# do I flatten y_pred and y_labels?
y_pred = y_pred.flatten()
y_labels = y_labels.flatten()
for idx, prediction in enumerate(y_pred):
if prediction == 1 and y_labels[idx] == 1:
# calculate IOU (overlap of prediction and gt bounding box)
iou = 0.78 # assume we get this iou value for objects at idx
if iou >= 0.5:
TP += 1
else:
FP += 1
elif prediction == 1 and y_labels[idx] == 0:
FP += 1
elif prediction == 0 and y_labels[idx] == 1:
FN += 1
else:
TN += 1
EPOCH_ACC = (TP + TN) / (TP + TN + FP + FN)
It is usually recommended to stick with batch-wise operations and avoid going into single-element processing steps while in the main training loop. One way to handle this case is to make your dataset return padded inputs and labels with additionally a mask that will come useful for loss computation. In other words, to compute the loss term with sequences of varying sizes, we will use a mask instead of doing individual slices.
Dataset
The way to proceed is to make sure you build the mask in the dataset and not in the inference loop. Here I am showing a minimal implementation that you should be able to transfer to your dataset without much hassle:
class Dataset(data.Dataset):
def __init__(self):
super().__init__()
def __len__(self):
return 100
def __getitem__(self, index):
i = random.randint(5, SEQ_LEN) # for demo puporse, generate x with random length
x = torch.rand(i, EMB_SIZE)
y = torch.randint(0, N_CLASSES, (i, EMB_SIZE))
# pad data to fit in batch
pad = torch.zeros(SEQ_LEN-len(x), EMB_SIZE)
x_padded = torch.cat((pad, x))
y_padded = torch.cat((pad, y))
# construct tensor to mask loss
mask = torch.cat((torch.zeros(SEQ_LEN-len(x)), torch.ones(len(x))))
return x_padded, y_padded, mask
Essentially in the __getitem__, we not only pad the input x and target y with zero values, we also construct a simple mask containing the positions of the padded values in the currently processed element.
Notice how:
x_padded, shaped (SEQ_LEN, EMB_SIZE)
y_padded, shaped (SEQ_LEN, N_CLASSES)
mask, shaped (SEQ_LEN,)
are all three tensors which are shape invariant across the dataset, yet mask contains the padding information necessary for us to compute the loss function appropriately.
Inference
The loss you've used nn.BCEWithLogitsLoss, is the correct one since it's a multi-dimensional loss used for binary classification. In other words, you can use it here in this multi-label classification task, considering each one of the 128 logits as an individual binary prediction. Do not use nn.CrossEntropyLoss) as suggested elsewhere, since the softmax will push a single logit (i.e. class), which is the behaviour required for single-label classification tasks.
Therefore, in the training loop, we simply have to apply the mask to our loss.
for x, y, mask in dl:
y_pred = model(x)
loss = mask*bce(y_pred, y)
# backpropagation, loss postprocessing, logs, etc.
This is what you need for the first part of the question, there are already loss functions implemented in tensorflow: https://medium.com/#aadityaura_26777/the-loss-function-for-multi-label-and-multi-class-f68f95cae525. Yours is just tf.nn.weighted_cross_entropy_with_logits, but you need to set the weight.
The second part of the question is not straightforward, because there's conditioning on the IOU, generally, when you do machine learning, you should heavily depend on matrix multiplication, in your case, you probably need to pre-calculate the IOU -> 1 or 0 as a vector, then multiply with the y_pred , element-wise, this will give you the modified y_pred . After that, you can use any accuracy available function to calculate the final result.
if you can use the CROSSENTROPYLOSS instead of BCEWithLogitsLoss there is something called ignore_index. you can use it to exclude your padded sequences. the difference between the 2 losses is the activation function used (softmax vs sigmoid). but I think you can still use the CROSSENTROPYLOSSfor binary classification as well.

Getting nans after applying softmax

I am trying to develop a deep Markov Model using following tutorial:
https://pyro.ai/examples/dmm.html
This model parameterises transitions and emissions with using a neural network and for variational inference part they use RNN to map observable 'x' to latent space. And in order to ensure that their model is learning something they try to maximise ELBO or minimise negative ELBO. They refer to negative ELBO as NLL.
I am basically converting pyro code to pure pytorch. And I've put together pretty much every thing. However, now I want to get a reconstruct error on test sequences. My input is one hot encoding of my sequences and it is of shape (500,1900,4) where 4 refers to number of features and 1900 is sequence length, and 500 refers to total number of examples.
The way I am generating data is:
generation model p(x_{1:T} | z_{1:T}) p(z_{1:T})
batch_size, _, x_dim = x.size() # number of time steps we need to process in the mini-batch
T_max = x_lens.max()
z_prev = self.z_0.expand(batch_size, self.z_0.size(0)) # set z_prev=z_0 to setup the recursive conditioning in p(z_t|z_{t-1})
for t in range(1, T_max + 1):
# sample z_t ~ p(z_t | z_{t-1}) one time step at a time
z_t, z_mu, z_logvar = self.trans(z_prev) # p(z_t | z_{t-1})
p_x_t = F.softmax(self.emitter(z_t),dim=-1) # compute the probabilities that parameterize the bernoulli likelihood
safe_tensor = torch.where(torch.isnan(p_x_t), torch.zeros_like(p_x_t), p_x_t)
print('generate p_x_t : ',safe_tensor)
x_t = torch.bernoulli(safe_tensor) #sample observe x_t according to the bernoulli distribution p(x_t|z_t)
print('generate x_t : ',x_t)
z_prev = z_t
So my emissions are being defined by Bernoulli distribution. And I use softmax in order to compute probabilities that parameterise the Bernoulli likelihood. And then I sample my observables x_t according the Bernoulli distribution.
At first when I ran my model, I was getting nans at times and so I introduced the line (show below) in order to convert nans to zero:
safe_tensor = torch.where(torch.isnan(p_x_t), torch.zeros_like(p_x_t), p_x_t)
However, after 1 epoch or so 'x_t' that I sample, this tensor is just zero. Basically, what I want is that after applying softmax, I want my function to pick the highest probability and give me the corresponding label for it which is either of the 4 features. But I get nans and then when I convert all nans to zero, I end up getting all zeros in all tensors after 1 epoch or so.
Also, when I look at p_x_t tensor I get probabilities that add up to one. But when I look at x_t tensor it gives me 0's all the way. So for example:
p_x_t : tensor([[0.2168, 0.2309, 0.2555, 0.2967]
.....], device='cuda:0',
grad_fn=<SWhereBackward>)
generate x_t : tensor([[0., 0., 0., 0.],...
], device='cuda:0', grad_fn=<BernoulliBackward0>)
Here fourth label/feature is giving me highest probability. Shouldn't the x_t tensor give me 1 at least in that position so be like:
generate x_t : tensor([[0., 0., 0., 1.],...
], device='cuda:0', grad_fn=<BernoulliBackward0>)
How can I get rid of this problems?
EDIT
My transition (which is called as self.trans in generate function mentioned above):
class GatedTransition(nn.Module):
"""
Parameterizes the gaussian latent transition probability `p(z_t | z_{t-1})`
See section 5 in the reference for comparison.
"""
def __init__(self, z_dim, trans_dim):
super(GatedTransition, self).__init__()
self.gate = nn.Sequential(
nn.Linear(z_dim, trans_dim),
nn.ReLU(),
nn.Linear(trans_dim, z_dim),
nn.Softmax(dim=-1)
)
self.proposed_mean = nn.Sequential(
nn.Linear(z_dim, trans_dim),
nn.ReLU(),
nn.Linear(trans_dim, z_dim)
)
self.z_to_mu = nn.Linear(z_dim, z_dim)
# modify the default initialization of z_to_mu so that it starts out as the identity function
self.z_to_mu.weight.data = torch.eye(z_dim)
self.z_to_mu.bias.data = torch.zeros(z_dim)
self.z_to_logvar = nn.Linear(z_dim, z_dim)
self.relu = nn.ReLU()
def forward(self, z_t_1):
"""
Given the latent `z_{t-1}` corresponding to the time step t-1
we return the mean and scale vectors that parameterize the (diagonal) gaussian distribution `p(z_t | z_{t-1})`
"""
gate = self.gate(z_t_1) # compute the gating function
proposed_mean = self.proposed_mean(z_t_1) # compute the 'proposed mean'
mu = (1 - gate) * self.z_to_mu(z_t_1) + gate * proposed_mean # compute the scale used to sample z_t, using the proposed mean from
logvar = self.z_to_logvar(self.relu(proposed_mean))
epsilon = torch.randn(z_t_1.size(), device=z_t_1.device) # sampling z by re-parameterization
z_t = mu + epsilon * torch.exp(0.5 * logvar) # [batch_sz x z_sz]
if torch.isinf(z_t).any().item():
print('something is infinity')
print('z_t : ',z_t)
print('logvar : ',logvar)
print('epsilon : ',epsilon)
print('mu : ',mu)
return z_t, mu, logvar
I do not get any inf in z_t tensor when doing training and validation. Only during testing. This is how I am training, validating and testing my model:
for epoch in range(config['epochs']):
train_loader=torch.utils.data.DataLoader(dataset=train_set, batch_size=config['batch_size'], shuffle=True, num_workers=1)
train_data_iter=iter(train_loader)
n_iters=train_data_iter.__len__()
epoch_nll = 0.0 # accumulator for our estimate of the negative log likelihood (or rather -elbo) for this epoch
i_batch=1
n_slices=0
loss_records={}
while True:
try: x, x_rev, x_lens = train_data_iter.next()
except StopIteration: break # end of epoch
x, x_rev, x_lens = gVar(x), gVar(x_rev), gVar(x_lens)
if config['anneal_epochs'] > 0 and epoch < config['anneal_epochs']: # compute the KL annealing factor
min_af = config['min_anneal']
kl_anneal = min_af+(1.0-min_af)*(float(i_batch+epoch*n_iters+1)/float(config['anneal_epochs']*n_iters))
else:
kl_anneal = 1.0 # by default the KL annealing factor is unity
loss_AE = model.train_AE(x, x_rev, x_lens, kl_anneal)
epoch_nll += loss_AE['train_loss_AE']
i_batch=i_batch+1
n_slices=n_slices+x_lens.sum().item()
loss_records.update(loss_AE)
loss_records.update({'epo_nll':epoch_nll/n_slices})
times.append(time.time())
epoch_time = times[-1] - times[-2]
log("[Epoch %04d]\t\t(dt = %.3f sec)"%(epoch, epoch_time))
log(loss_records)
if args.visual:
for k, v in loss_records.items():
tb_writer.add_scalar(k, v, epoch)
# do evaluation on test and validation data and report results
if (epoch+1) % args.test_freq == 0:
save_model(model, epoch)
#test_loader=torch.utils.data.DataLoader(dataset=test_set, batch_size=config['batch_size'], shuffle=False, num_workers=1)
valid_loader=torch.utils.data.DataLoader(dataset=valid_set, batch_size=config['batch_size'], shuffle=False, num_workers=1)
for x, x_rev, x_lens in valid_loader:
x, x_rev, x_lens = gVar(x), gVar(x_rev), gVar(x_lens)
loss,kl_loss = model.valid(x, x_rev, x_lens)
#print('x_lens sum : ',x_lens.sum().item())
#print('loss : ',loss)
valid_nll = loss/x_lens.sum().item()
log("[Epoch %04d]\t\t(valid_loss = %.8f)\t\t(kl_loss = %.8f)\t\t(valid_nll = %.8f)"%(epoch, loss, kl_loss, valid_nll ))
test_loader=torch.utils.data.DataLoader(dataset=test_set, batch_size=config['batch_size'], shuffle=False, num_workers=1)
for x, x_rev, x_lens in test_loader:
x, x_rev, x_lens = gVar(x), gVar(x_rev), gVar(x_lens)
loss,kl_loss = model.valid(x, x_rev, x_lens)
test_nll = loss/x_lens.sum().item()
model.generate(x, x_rev, x_lens)
log("[test_nll epoch %08d] %.8f" % (epoch, test_nll))
The test is outside the for loop for epoch. Because I want to test my model on test sequences using generate function. Can you now help me understand if there's something wrong I am doing?

Use neural network to learn a square wave function

Out of curiosity, I am trying to build a simple fully connected NN using tensorflow to learn a square wave function such as the following one:
Therefore the input is a 1D array of x value (as the horizontal axis), and the output is a binary scalar value. I used tf.nn.sparse_softmax_cross_entropy_with_logits as loss function, and tf.nn.relu as activation. There are 3 hidden layers (100*100*100) and a single input node and output node. The input data are generated to match the above wave shape and therefore the data size is not a problem.
However, the trained model seems to fail completed, predicting for the negative class always.
So I am trying to figure out why this happened. Whether the NN configuration is suboptimal, or it is due to some mathematical flaw in NN beneath the surface (though I think NN should be able to imitate any function).
Thanks.
As per suggestions in the comment section, here is the full code. One thing I noticed saying wrong earlier is, there were actually 2 output nodes (due to 2 output classes):
"""
See if neural net can find piecewise linear correlation in the data
"""
import time
import os
import tensorflow as tf
import numpy as np
def generate_placeholder(batch_size):
x_placeholder = tf.placeholder(tf.float32, shape=(batch_size, 1))
y_placeholder = tf.placeholder(tf.float32, shape=(batch_size))
return x_placeholder, y_placeholder
def feed_placeholder(x, y, x_placeholder, y_placeholder, batch_size, loop):
x_selected = [[None]] * batch_size
y_selected = [None] * batch_size
for i in range(batch_size):
x_selected[i][0] = x[min(loop*batch_size, loop*batch_size % len(x)) + i, 0]
y_selected[i] = y[min(loop*batch_size, loop*batch_size % len(y)) + i]
feed_dict = {x_placeholder: x_selected,
y_placeholder: y_selected}
return feed_dict
def inference(input_x, H1_units, H2_units, H3_units):
with tf.name_scope('H1'):
weights = tf.Variable(tf.truncated_normal([1, H1_units], stddev=1.0/2), name='weights')
biases = tf.Variable(tf.zeros([H1_units]), name='biases')
a1 = tf.nn.relu(tf.matmul(input_x, weights) + biases)
with tf.name_scope('H2'):
weights = tf.Variable(tf.truncated_normal([H1_units, H2_units], stddev=1.0/H1_units), name='weights')
biases = tf.Variable(tf.zeros([H2_units]), name='biases')
a2 = tf.nn.relu(tf.matmul(a1, weights) + biases)
with tf.name_scope('H3'):
weights = tf.Variable(tf.truncated_normal([H2_units, H3_units], stddev=1.0/H2_units), name='weights')
biases = tf.Variable(tf.zeros([H3_units]), name='biases')
a3 = tf.nn.relu(tf.matmul(a2, weights) + biases)
with tf.name_scope('softmax_linear'):
weights = tf.Variable(tf.truncated_normal([H3_units, 2], stddev=1.0/np.sqrt(H3_units)), name='weights')
biases = tf.Variable(tf.zeros([2]), name='biases')
logits = tf.matmul(a3, weights) + biases
return logits
def loss(logits, labels):
labels = tf.to_int32(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits, name='xentropy')
return tf.reduce_mean(cross_entropy, name='xentropy_mean')
def inspect_y(labels):
return tf.reduce_sum(tf.cast(labels, tf.int32))
def training(loss, learning_rate):
tf.summary.scalar('lost', loss)
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
global_step = tf.Variable(0, name='global_step', trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(logits, labels):
labels = tf.to_int32(labels)
correct = tf.nn.in_top_k(logits, labels, 1)
return tf.reduce_sum(tf.cast(correct, tf.int32))
def run_training(x, y, batch_size):
with tf.Graph().as_default():
x_placeholder, y_placeholder = generate_placeholder(batch_size)
logits = inference(x_placeholder, 100, 100, 100)
Loss = loss(logits, y_placeholder)
y_sum = inspect_y(y_placeholder)
train_op = training(Loss, 0.01)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
max_steps = 10000
for step in range(max_steps):
start_time = time.time()
feed_dict = feed_placeholder(x, y, x_placeholder, y_placeholder, batch_size, step)
_, loss_val = sess.run([train_op, Loss], feed_dict = feed_dict)
duration = time.time() - start_time
if step % 100 == 0:
print('Step {}: loss = {:.2f} {:.3f}sec'.format(step, loss_val, duration))
x_test = np.array(range(1000)) * 0.001
x_test = np.reshape(x_test, (1000, 1))
_ = sess.run(logits, feed_dict={x_placeholder: x_test})
print(min(_[:, 0]), max(_[:, 0]), min(_[:, 1]), max(_[:, 1]))
print(_)
if __name__ == '__main__':
population = 10000
input_x = np.random.rand(population)
input_y = np.copy(input_x)
for bin in range(10):
print(bin, bin/10, 0.5 - 0.5*(-1)**bin)
input_y[input_x >= bin/10] = 0.5 - 0.5*(-1)**bin
batch_size = 1000
input_x = np.reshape(input_x, (population, 1))
run_training(input_x, input_y, batch_size)
Sample output shows that the model always prefer the first class over the second, as shown by min(_[:, 0]) > max(_[:, 1]), i.e. the minimum logit output for the first class is higher than the maximum logit output for the second class, for a sample size of population.
My mistake. The problem occurred in the line:
for i in range(batch_size):
x_selected[i][0] = x[min(loop*batch_size, loop*batch_size % len(x)) + i, 0]
y_selected[i] = y[min(loop*batch_size, loop*batch_size % len(y)) + i]
Python is mutating the whole list of x_selected to the same value. Now this code issue is resolved. The fix is:
x_selected = np.zeros((batch_size, 1))
y_selected = np.zeros((batch_size,))
for i in range(batch_size):
x_selected[i, 0] = x[(loop*batch_size + i) % x.shape[0], 0]
y_selected[i] = y[(loop*batch_size + i) % y.shape[0]]
After this fix, the model is showing more variation. It currently outputs class 0 for x <= 0.5 and class 1 for x > 0.5. But this is still far from ideal.
So after changing the network configuration to 100 nodes * 4 layers, after 1 million training steps (batch size = 100, sample size = 10 million), the model is performing very well showing only errors at the edges when y flips.
Therefore this question is closed.
You essentially try to learn a periodic function and the function is highly non-linear and non-smooth. So it is NOT simple as it looks like. In short, a better representation of the input feature helps.
Suppose your have a period T = 2, f(x) = f(x+2).
For a reduced problem when input/output are integers, your function is then f(x) = 1 if x is odd else -1. In this case, your problem would be reduced to this discussion in which we train a Neural Network to distinguish between odd and even numbers.
I guess the second bullet in that post should help (even for the general case when inputs are float numbers).
Try representing the numbers in binary using a fixed length precision.
In our reduced problem above, it's easy to see that the output is determined iff the least-significant bit is known.
decimal binary -> output
1: 0 0 1 -> 1
2: 0 1 0 -> -1
3: 0 1 1 -> 1
...
I created the model and the structure for the problem of recognizing odd/even numbers in here.
If you abstract the fact that:
decimal binary -> output
1: 0 0 1 -> 1
2: 0 1 0 -> -1
3: 0 1 1 -> 1
Is almost equivalent to:
decimal binary -> output
1: 0 0 1 -> 1
2: 0 1 0 -> 0
3: 0 1 1 -> 1
You may update the code to fit your need.

Neural Network MNIST: Backpropagation is correct, but training/test accuracy very low

I am building a neural network to learn to recognize handwritten digits from MNIST. I have confirmed that backpropagation calculates the gradients perfectly (gradient checking gives error < 10 ^ -10).
It appears that no matter how I train the weights, the cost function always tends towards around 3.24-3.25 (never below that, just approaching from above) and the training/test set accuracy is very low (around 11% for the test set). It appears that the h values in the end are all very close to 0.1 and to each other.
I cannot find why my program cannot produce better results. I was wondering if anyone could maybe take a look at my code and please tell me any reasons for this occurring. Thank you so much for all your help, I really appreciate it!
Here is my Python code:
import numpy as np
import math
from tensorflow.examples.tutorials.mnist import input_data
# Neural network has four layers
# The input layer has 784 nodes
# The two hidden layers each have 5 nodes
# The output layer has 10 nodes
num_layer = 4
num_node = [784,5,5,10]
num_output_node = 10
# 30000 training sets are used
# 10000 test sets are used
# Can be adjusted
Ntrain = 30000
Ntest = 10000
# Sigmoid Function
def g(X):
return 1/(1 + np.exp(-X))
# Forwardpropagation
def h(W,X):
a = X
for l in range(num_layer - 1):
a = np.insert(a,0,1)
z = np.dot(a,W[l])
a = g(z)
return a
# Cost Function
def J(y, W, X, Lambda):
cost = 0
for i in range(Ntrain):
H = h(W,X[i])
for k in range(num_output_node):
cost = cost + y[i][k] * math.log(H[k]) + (1-y[i][k]) * math.log(1-H[k])
regularization = 0
for l in range(num_layer - 1):
for i in range(num_node[l]):
for j in range(num_node[l+1]):
regularization = regularization + W[l][i+1][j] ** 2
return (-1/Ntrain * cost + Lambda / (2*Ntrain) * regularization)
# Backpropagation - confirmed to be correct
# Algorithm based on https://www.coursera.org/learn/machine-learning/lecture/1z9WW/backpropagation-algorithm
# Returns D, the value of the gradient
def BackPropagation(y, W, X, Lambda):
delta = np.empty(num_layer-1, dtype = object)
for l in range(num_layer - 1):
delta[l] = np.zeros((num_node[l]+1,num_node[l+1]))
for i in range(Ntrain):
A = np.empty(num_layer-1, dtype = object)
a = X[i]
for l in range(num_layer - 1):
A[l] = a
a = np.insert(a,0,1)
z = np.dot(a,W[l])
a = g(z)
diff = a - y[i]
delta[num_layer-2] = delta[num_layer-2] + np.outer(np.insert(A[num_layer-2],0,1),diff)
for l in range(num_layer-2):
index = num_layer-2-l
diff = np.multiply(np.dot(np.array([W[index][k+1] for k in range(num_node[index])]), diff), np.multiply(A[index], 1-A[index]))
delta[index-1] = delta[index-1] + np.outer(np.insert(A[index-1],0,1),diff)
D = np.empty(num_layer-1, dtype = object)
for l in range(num_layer - 1):
D[l] = np.zeros((num_node[l]+1,num_node[l+1]))
for l in range(num_layer-1):
for i in range(num_node[l]+1):
if i == 0:
for j in range(num_node[l+1]):
D[l][i][j] = 1/Ntrain * delta[l][i][j]
else:
for j in range(num_node[l+1]):
D[l][i][j] = 1/Ntrain * (delta[l][i][j] + Lambda * W[l][i][j])
return D
# Neural network - this is where the learning/adjusting of weights occur
# W is the weights
# learn is the learning rate
# iterations is the number of iterations we pass over the training set
# Lambda is the regularization parameter
def NeuralNetwork(y, X, learn, iterations, Lambda):
W = np.empty(num_layer-1, dtype = object)
for l in range(num_layer - 1):
W[l] = np.random.rand(num_node[l]+1,num_node[l+1])/100
for k in range(iterations):
print(J(y, W, X, Lambda))
D = BackPropagation(y, W, X, Lambda)
for l in range(num_layer-1):
W[l] = W[l] - learn * D[l]
print(J(y, W, X, Lambda))
return W
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Training data, read from MNIST
inputpix = []
output = []
for i in range(Ntrain):
inputpix.append(2 * np.array(mnist.train.images[i]) - 1)
output.append(np.array(mnist.train.labels[i]))
np.savetxt('input.txt', inputpix, delimiter=' ')
np.savetxt('output.txt', output, delimiter=' ')
# Train the weights
finalweights = NeuralNetwork(output, inputpix, 2, 5, 1)
# Test data
inputtestpix = []
outputtest = []
for i in range(Ntest):
inputtestpix.append(2 * np.array(mnist.test.images[i]) - 1)
outputtest.append(np.array(mnist.test.labels[i]))
np.savetxt('inputtest.txt', inputtestpix, delimiter=' ')
np.savetxt('outputtest.txt', outputtest, delimiter=' ')
# Determine the accuracy of the training data
count = 0
for i in range(Ntrain):
H = h(finalweights,inputpix[i])
print(H)
for j in range(num_output_node):
if H[j] == np.amax(H) and output[i][j] == 1:
count = count + 1
print(count/Ntrain)
# Determine the accuracy of the test data
count = 0
for i in range(Ntest):
H = h(finalweights,inputtestpix[i])
print(H)
for j in range(num_output_node):
if H[j] == np.amax(H) and outputtest[i][j] == 1:
count = count + 1
print(count/Ntest)
Your network is tiny, 5 neurons make it basically a linear model. Increase it to 256 per layer.
Notice, that trivial linear model has 768 * 10 + 10 (biases) parameters, adding up to 7690 floats. Your neural network on the other hand has 768 * 5 + 5 + 5 * 5 + 5 + 5 * 10 + 10 = 3845 + 30 + 60 = 3935. In other words despite being nonlinear neural network, it is actualy a simpler model than a trivial logistic regression applied to this problem. And logistic regression obtains around 11% error on its own, thus you cannot really expect to beat it. Of course this is not a strict argument, but should give you some intuition for why it should not work.
Second issue is related to other hyperparameters, you seem to be using:
huge learning rate (is it 2?) it should be more of order 0.0001
very little training iterations (are you just executing 5 epochs?)
your regularization parameter is huge (it is set to 1), so your network is heavily penalised for learning anything, again - change it to something order of magnitude smaller
The NN architecture is most likely under-fitting. Maybe, the learning rate is high/low. Or there are most issues with the regularization parameter.

How to train a RNN with LSTM cells for time series prediction

I'm currently trying to build a simple model for predicting time series. The goal would be to train the model with a sequence so that the model is able to predict future values.
I'm using tensorflow and lstm cells to do so. The model is trained with truncated backpropagation through time. My question is how to structure the data for training.
For example let's assume we want to learn the given sequence:
[1,2,3,4,5,6,7,8,9,10,11,...]
And we unroll the network for num_steps=4.
Option 1
input data label
1,2,3,4 2,3,4,5
5,6,7,8 6,7,8,9
9,10,11,12 10,11,12,13
...
Option 2
input data label
1,2,3,4 2,3,4,5
2,3,4,5 3,4,5,6
3,4,5,6 4,5,6,7
...
Option 3
input data label
1,2,3,4 5
2,3,4,5 6
3,4,5,6 7
...
Option 4
input data label
1,2,3,4 5
5,6,7,8 9
9,10,11,12 13
...
Any help would be appreciated.
I'm just about to learn LSTMs in TensorFlow and try to implement an example which (luckily) tries to predict some time-series / number-series genereated by a simple math-fuction.
But I'm using a different way to structure the data for training, motivated by Unsupervised Learning of Video Representations using LSTMs:
LSTM Future Predictor Model
Option 5:
input data label
1,2,3,4 5,6,7,8
2,3,4,5 6,7,8,9
3,4,5,6 7,8,9,10
...
Beside this paper, I (tried) to take inspiration by the given TensorFlow RNN examples. My current complete solution looks like this:
import math
import random
import numpy as np
import tensorflow as tf
LSTM_SIZE = 64
LSTM_LAYERS = 2
BATCH_SIZE = 16
NUM_T_STEPS = 4
MAX_STEPS = 1000
LAMBDA_REG = 5e-4
def ground_truth_func(i, j, t):
return i * math.pow(t, 2) + j
def get_batch(batch_size):
seq = np.zeros([batch_size, NUM_T_STEPS, 1], dtype=np.float32)
tgt = np.zeros([batch_size, NUM_T_STEPS], dtype=np.float32)
for b in xrange(batch_size):
i = float(random.randint(-25, 25))
j = float(random.randint(-100, 100))
for t in xrange(NUM_T_STEPS):
value = ground_truth_func(i, j, t)
seq[b, t, 0] = value
for t in xrange(NUM_T_STEPS):
tgt[b, t] = ground_truth_func(i, j, t + NUM_T_STEPS)
return seq, tgt
# Placeholder for the inputs in a given iteration
sequence = tf.placeholder(tf.float32, [BATCH_SIZE, NUM_T_STEPS, 1])
target = tf.placeholder(tf.float32, [BATCH_SIZE, NUM_T_STEPS])
fc1_weight = tf.get_variable('w1', [LSTM_SIZE, 1], initializer=tf.random_normal_initializer(mean=0.0, stddev=1.0))
fc1_bias = tf.get_variable('b1', [1], initializer=tf.constant_initializer(0.1))
# ENCODER
with tf.variable_scope('ENC_LSTM'):
lstm = tf.nn.rnn_cell.LSTMCell(LSTM_SIZE)
multi_lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * LSTM_LAYERS)
initial_state = multi_lstm.zero_state(BATCH_SIZE, tf.float32)
state = initial_state
for t_step in xrange(NUM_T_STEPS):
if t_step > 0:
tf.get_variable_scope().reuse_variables()
# state value is updated after processing each batch of sequences
output, state = multi_lstm(sequence[:, t_step, :], state)
learned_representation = state
# DECODER
with tf.variable_scope('DEC_LSTM'):
lstm = tf.nn.rnn_cell.LSTMCell(LSTM_SIZE)
multi_lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * LSTM_LAYERS)
state = learned_representation
logits_stacked = None
loss = 0.0
for t_step in xrange(NUM_T_STEPS):
if t_step > 0:
tf.get_variable_scope().reuse_variables()
# state value is updated after processing each batch of sequences
output, state = multi_lstm(sequence[:, t_step, :], state)
# output can be used to make next number prediction
logits = tf.matmul(output, fc1_weight) + fc1_bias
if logits_stacked is None:
logits_stacked = logits
else:
logits_stacked = tf.concat(1, [logits_stacked, logits])
loss += tf.reduce_sum(tf.square(logits - target[:, t_step])) / BATCH_SIZE
reg_loss = loss + LAMBDA_REG * (tf.nn.l2_loss(fc1_weight) + tf.nn.l2_loss(fc1_bias))
train = tf.train.AdamOptimizer().minimize(reg_loss)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
total_loss = 0.0
for step in xrange(MAX_STEPS):
seq_batch, target_batch = get_batch(BATCH_SIZE)
feed = {sequence: seq_batch, target: target_batch}
_, current_loss = sess.run([train, reg_loss], feed)
if step % 10 == 0:
print("#{}: {}".format(step, current_loss))
total_loss += current_loss
print('Total loss:', total_loss)
print('### SIMPLE EVAL: ###')
seq_batch, target_batch = get_batch(BATCH_SIZE)
feed = {sequence: seq_batch, target: target_batch}
prediction = sess.run([logits_stacked], feed)
for b in xrange(BATCH_SIZE):
print("{} -> {})".format(str(seq_batch[b, :, 0]), target_batch[b, :]))
print(" `-> Prediction: {}".format(prediction[0][b]))
Sample output of this looks like this:
### SIMPLE EVAL: ###
# [input seq] -> [target prediction]
# `-> Prediction: [model prediction]
[ 33. 53. 113. 213.] -> [ 353. 533. 753. 1013.])
`-> Prediction: [ 19.74548721 28.3149128 33.11489105 35.06603241]
[ -17. -32. -77. -152.] -> [-257. -392. -557. -752.])
`-> Prediction: [-16.38951683 -24.3657589 -29.49801064 -31.58583832]
[ -7. -4. 5. 20.] -> [ 41. 68. 101. 140.])
`-> Prediction: [ 14.14126873 22.74848557 31.29668617 36.73633194]
...
The model is a LSTM-autoencoder having 2 layers each.
Unfortunately, as you can see in the results, this model does not learn the sequence properly. I might be the case that I'm just doing a bad mistake somewhere, or that 1000-10000 training steps is just way to few for a LSTM. As I said, I'm also just starting to understand/use LSTMs properly.
But hopefully this can give you some inspiration regarding the implementation.
After reading several LSTM introduction blogs e.g. Jakob Aungiers', option 3 seems to be the right one for stateless LSTM.
If your LSTMs need to remember data longer ago than your num_steps, your can train in a stateful way - for a Keras example see Philippe Remy's blog post "Stateful LSTM in Keras". Philippe does not show an example for batch size greater than one, however. I guess that in your case a batch size of four with stateful LSTM could be used with the following data (written as input -> label):
batch #0:
1,2,3,4 -> 5
2,3,4,5 -> 6
3,4,5,6 -> 7
4,5,6,7 -> 8
batch #1:
5,6,7,8 -> 9
6,7,8,9 -> 10
7,8,9,10 -> 11
8,9,10,11 -> 12
batch #2:
9,10,11,12 -> 13
...
By this, the state of e.g. the 2nd sample in batch #0 is correctly reused to continue training with the 2nd sample of batch #1.
This is somehow similar to your option 4, however you are not using all available labels there.
Update:
In extension to my suggestion where batch_size equals the num_steps, Alexis Huet gives an answer for the case of batch_size being a divisor of num_steps, which can be used for larger num_steps. He describes it nicely on his blog.
I believe Option 1 is closest to the reference implementation in /tensorflow/models/rnn/ptb/reader.py
def ptb_iterator(raw_data, batch_size, num_steps):
"""Iterate on the raw PTB data.
This generates batch_size pointers into the raw PTB data, and allows
minibatch iteration along these pointers.
Args:
raw_data: one of the raw data outputs from ptb_raw_data.
batch_size: int, the batch size.
num_steps: int, the number of unrolls.
Yields:
Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
The second element of the tuple is the same data time-shifted to the
right by one.
Raises:
ValueError: if batch_size or num_steps are too high.
"""
raw_data = np.array(raw_data, dtype=np.int32)
data_len = len(raw_data)
batch_len = data_len // batch_size
data = np.zeros([batch_size, batch_len], dtype=np.int32)
for i in range(batch_size):
data[i] = raw_data[batch_len * i:batch_len * (i + 1)]
epoch_size = (batch_len - 1) // num_steps
if epoch_size == 0:
raise ValueError("epoch_size == 0, decrease batch_size or num_steps")
for i in range(epoch_size):
x = data[:, i*num_steps:(i+1)*num_steps]
y = data[:, i*num_steps+1:(i+1)*num_steps+1]
yield (x, y)
However, another Option is to select a pointer into your data array randomly for each training sequence.

Resources