My speaker recognition neural network doesn’t work well - machine-learning

I have a final project in my first degree and I want to build a Neural Network that gonna take the first 13 mfcc coeffs of a wav file and return who talked in the audio file from a banch of talkers.
I want you to notice that:
My audio files are text independent, therefore they have different length and words
I have trained the machine on about 35 audio files of 10 speaker ( the first speaker had about 15, the second 10, and the third and fourth about 5 each )
I defined :
X=mfcc(sound_voice)
Y=zero_array + 1 in the i_th position ( where i_th position is 0 for the first speaker, 1 for the second, 2 for the third... )
And than trained the machine, and than checked the output of the machine for some files...
So that’s what I did... but unfortunately it’s look like the results are completely random...
Can you help me understand why?
This is my code in python -
from sklearn.neural_network import MLPClassifier
import python_speech_features
import scipy.io.wavfile as wav
import numpy as np
from os import listdir
from os.path import isfile, join
from random import shuffle
import matplotlib.pyplot as plt
from tqdm import tqdm
winner = [] # this array count how much Bingo we had when we test the NN
for TestNum in tqdm(range(5)): # in every round we build NN with X,Y that out of them we check 50 after we build the NN
X = []
Y = []
onlyfiles = [f for f in listdir("FinalAudios/") if isfile(join("FinalAudios/", f))] # Files in dir
names = [] # names of the speakers
for file in onlyfiles: # for each wav sound
# UNESSECERY TO UNDERSTAND THE CODE
if " " not in file.split("_")[0]:
names.append(file.split("_")[0])
else:
names.append(file.split("_")[0].split(" ")[0])
names = list(dict.fromkeys(names)) # names of speakers
vector_names = [] # vector for each name
i = 0
vector_for_each_name = [0] * len(names)
for name in names:
vector_for_each_name[i] += 1
vector_names.append(np.array(vector_for_each_name))
vector_for_each_name[i] -= 1
i += 1
for f in onlyfiles:
if " " not in f.split("_")[0]:
f_speaker = f.split("_")[0]
else:
f_speaker = f.split("_")[0].split(" ")[0]
(rate, sig) = wav.read("FinalAudios/" + f) # read the file
try:
mfcc_feat = python_speech_features.mfcc(sig, rate, winlen=0.2, nfft=512) # mfcc coeffs
for index in range(len(mfcc_feat)): # adding each mfcc coeff to X, meaning if there is 50000 coeffs than
# X will be [first coeff, second .... 50000'th coeff] and Y will be [f_speaker_vector] * 50000
X.append(np.array(mfcc_feat[index]))
Y.append(np.array(vector_names[names.index(f_speaker)]))
except IndexError:
pass
Z = list(zip(X, Y))
shuffle(Z) # WE SHUFFLE X,Y TO PERFORM RANDOM ON THE TEST LEVEL
X, Y = zip(*Z)
X = list(X)
Y = list(Y)
X = np.asarray(X)
Y = np.asarray(Y)
Y_test = Y[:50] # CHOOSE 50 FOR TEST, OTHERS FOR TRAIN
X_test = X[:50]
X = X[50:]
Y = Y[50:]
clf = MLPClassifier(solver='lbfgs', alpha=1e-2, hidden_layer_sizes=(5, 3), random_state=2) # create the NN
clf.fit(X, Y) # Train it
for sample in range(len(X_test)): # add 1 to winner array if we correct and 0 if not, than in the end it plot it
if list(clf.predict([X[sample]])[0]) == list(Y_test[sample]):
winner.append(1)
else:
winner.append(0)
# plot winner
plot_x = []
plot_y = []
for i in range(1, len(winner)):
plot_y.append(sum(winner[0:i])*1.0/len(winner[0:i]))
plot_x.append(i)
plt.plot(plot_x, plot_y)
plt.xlabel('x - axis')
# naming the y axis
plt.ylabel('y - axis')
# giving a title to my graph
plt.title('My first graph!')
# function to show the plot
plt.show()
This is my zip file that contains the code and the audio file : https://ufile.io/eggjm1gw

You have a number of issues in your code and it will be close to impossible to get it right in one go, but let's give it a try. There are two major issues:
Currently you're trying to teach your neural network with very few training examples, as few as a single one per speaker (!). It's impossible for any machine learning algorithm to learn anything.
To make matters worse, what you do is that you feed to the ANN only MFCC for the first 25 ms of each recording (25 comes from winlen parameter of python_speech_features). In each of these recordings, first 25 ms will be close to identical. Even if you had 10k recordings per speaker, with this approach you'd not get anywhere.
I will give you concrete advise, but won't do all the coding - it's your homework after all.
Use all MFCC, not just first 25 ms. Many of these should be skipped, simply because there's no voice activity. Normally there should be VOD (Voice Activity Detector) telling you which ones to take, but in this exercise I'd skip it for starter (you need to learn basics first).
Don't use dictionaries. Not only it won't fly with more than one MFCC vector per speaker, but also it's very inefficient data structure for your task. Use numpy arrays, they're much faster and memory efficient. There's a ton of tutorials, including scikit-learn that demonstrate how to use numpy in this context. In essence, you create two arrays: one with training data, second with labels. Example: if omersk speaker "produces" 50000 MFCC vectors, you will get (50000, 13) training array. Corresponding label array would be 50000 with single constant value (id) that corresponds to the speaker (say, omersk is 0, lucas is 1 and so on). I'd consider taking longer windows (perhaps 200 ms, experiment!) to reduce the variance.
Don't forget to split your data for training, validation and test. You will have more than enough data. Also, for this exercise I'd watch for not feeding too much of data for any single speaker - ot taking steps to make sure algorithm is not biased.
Later, when you make prediction, you will again compute MFCCs for the speaker. With 10 sec recording, 200 ms window and 100 ms overlap, you'll get 99 MFCC vectors, shape (99, 13). The model should run on each of the 99 vectors, for each producing probability. When you sum it (and normalise, to make it nice) and take top value, you'll get the most likely speaker.
There's a dozen of other things that typically would be taken into account, but in this case (homework) I'd focus on getting the basics right.
EDIT: I decided to take a stab at creating the model with your idea at heart, but basics fixed. It's not exactly clean Python, all because it's adapted from Jupyter Notebook I was running.
import python_speech_features
import scipy.io.wavfile as wav
import numpy as np
import glob
import os
from collections import defaultdict
from sklearn.neural_network import MLPClassifier
from sklearn import preprocessing
from sklearn.model_selection import cross_validate
from sklearn.ensemble import RandomForestClassifier
audio_files_path = glob.glob('audio/*.wav')
win_len = 0.04 # in seconds
step = win_len / 2
nfft = 2048
mfccs_all_speakers = []
names = []
data = []
for path in audio_files_path:
fs, audio = wav.read(path)
if audio.size > 0:
mfcc = python_speech_features.mfcc(audio, samplerate=fs, winlen=win_len,
winstep=step, nfft=nfft, appendEnergy=False)
filename = os.path.splitext(os.path.basename(path))[0]
speaker = filename[:filename.find('_')]
data.append({'filename': filename,
'speaker': speaker,
'samples': mfcc.shape[0],
'mfcc': mfcc})
else:
print(f'Skipping {path} due to 0 file size')
speaker_sample_size = defaultdict(int)
for entry in data:
speaker_sample_size[entry['speaker']] += entry['samples']
person_with_fewest_samples = min(speaker_sample_size, key=speaker_sample_size.get)
print(person_with_fewest_samples)
max_accepted_samples = int(speaker_sample_size[person_with_fewest_samples] * 0.8)
print(max_accepted_samples)
training_idx = []
test_idx = []
accumulated_size = defaultdict(int)
for entry in data:
if entry['speaker'] not in accumulated_size:
training_idx.append(entry['filename'])
accumulated_size[entry['speaker']] += entry['samples']
elif accumulated_size[entry['speaker']] < max_accepted_samples:
accumulated_size[entry['speaker']] += entry['samples']
training_idx.append(entry['filename'])
X_train = []
label_train = []
X_test = []
label_test = []
for entry in data:
if entry['filename'] in training_idx:
X_train.append(entry['mfcc'])
label_train.extend([entry['speaker']] * entry['mfcc'].shape[0])
else:
X_test.append(entry['mfcc'])
label_test.extend([entry['speaker']] * entry['mfcc'].shape[0])
X_train = np.concatenate(X_train, axis=0)
X_test = np.concatenate(X_test, axis=0)
assert (X_train.shape[0] == len(label_train))
assert (X_test.shape[0] == len(label_test))
print(f'Training: {X_train.shape}')
print(f'Testing: {X_test.shape}')
le = preprocessing.LabelEncoder()
y_train = le.fit_transform(label_train)
y_test = le.transform(label_test)
clf = MLPClassifier(solver='lbfgs', alpha=1e-2, hidden_layer_sizes=(5, 3), random_state=42, max_iter=1000)
cv_results = cross_validate(clf, X_train, y_train, cv=4)
print(cv_results)
{'fit_time': array([3.33842635, 4.25872731, 4.73704267, 5.9454329 ]),
'score_time': array([0.00125694, 0.00073504, 0.00074005, 0.00078583]),
'test_score': array([0.40380048, 0.52969121, 0.48448687, 0.46043165])}
The test_score isn't stellar. There's a lot to improve (for starter, choice of algorithm), but the basics are there. Notice for starter how I get the training samples. It's not random, I only consider recordings as whole. You can't put samples from a given recording to both training and test, as test is supposed to be novel.
What was not working in your code? I'd say a lot. You were taking 200ms samples and yet very short fft. python_speech_features likely complained to you that the fft is should be longer than the frame you're processing.
I leave to you testing the model. It won't be good, but it's a starter.

Related

Can I calculate the confidence bound of a Prophet model that would contain a certain value?

can I use the y-hat variance, the bounds, and the point estimate from the forecast data frame to calculate the confidence level that would contain a given value?
I've seen that I can change my interval level prior to fitting but programmatically that feels like a LOT of expensive trial and error.
Is there a way to estimate the confidence bound using only the information from the model parameters and the forecast data frame?
Something like:
for level in [.05, .1, .15, ... , .95]:
if value_in_question in (yhat - Z_{level}*yhat_variance/N, yhat + Z_{level}*yhat_variance/N):
print 'im in the bound level {level}'
# This is sudo code not meant to run in console
EDIT: working prophet example
# csv from fbprohets working examples https://github.com/facebook/prophet/blob/master/examples/example_wp_log_peyton_manning.csv
import pandas as pd
from fbprophet import Prophet
import os
df = pd.read_csv('example_wp_log_peyton_manning.csv')
m = Prophet()
m.fit(df)
future = m.make_future_dataframe(periods=30)
forecast = m.predict(future)
# the smallest confidence level s.t. the confidence interval of the 30th prediction contains 9
## My current approach
def __probability_calculation(estimate, forecast, j = 30):
sd_residuals = (forecast.yhat_lower[j] - forecast.yhat[j])/(-1.28)
for alpha in np.arange(.5, .95, .01):
z_val = st.norm.ppf(alpha)
if (forecast.yhat[j]-z_val*sd_residuals < estimate < forecast.yhat[j]+z_val*sd_residuals):
return alpha
prob = __probability_calculation(9, forecast)
fbprophet uses the numpy.percentile method to estimate the percentiles as you can see here in the source code:
https://github.com/facebook/prophet/blob/0616bfb5daa6888e9665bba1f95d9d67e91fed66/python/prophet/forecaster.py#L1448
How to inverse calculate percentiles for values is already answered here:
Map each list value to its corresponding percentile
Combining everything based on your code example:
import pandas as pd
import numpy as np
import scipy.stats as st
from fbprophet import Prophet
url = 'https://raw.githubusercontent.com/facebook/prophet/master/examples/example_wp_log_peyton_manning.csv'
df = pd.read_csv(url)
# put the amount of uncertainty samples in a variable so we can use it later.
uncertainty_samples = 1000 # 1000 is the default
m = Prophet(uncertainty_samples=uncertainty_samples)
m.fit(df)
future = m.make_future_dataframe(periods=30)
# You need to replicate some of the preparation steps which are part of the predict() call internals
tmpdf = m.setup_dataframe(future)
tmpdf['trend'] = m.predict_trend(tmpdf)
sim_values = m.sample_posterior_predictive(tmpdf)
The sim_values object contains for every datapoint 1000 simulations on which the confidence interval is based.
Now you can call the scipy.stats.percentileofscore method with any target value
target_value = 8
st.percentileofscore(sim_values['yhat'], target_value, 'weak') / uncertainty_samples
# returns 44.26
To prove this works backwards and forwards you can get the output of the np.percentile method and put it in the scipy.stats.percentileofscore method.
This works for an accuracy of 4 decimals:
ACCURACY = 4
for test_percentile in np.arange(0, 100, 0.5):
target_value = np.percentile(sim_values['yhat'], test_percentile)
if not np.round(st.percentileofscore(sim_values['yhat'], target_value, 'weak') / uncertainty_samples, ACCURACY) == np.round(test_percentile, ACCURACY):
print(test_percentile)
raise ValueError('This doesnt work')

How to handle class imbalance of multiple columns?

My dataset is :enter image description here. First seven columns are for input metric. And the last five columns are for outputs. Output is an array of 5 numbers consist of zero or one. I am using Keras functional API for that. Whenever I try to to resample my data with individual columns, I got shape issues in merging, even if I I try to slice the rows.
Basically there's no "easy" approach to doing this. The only logical way is to maybe use Label Powerset over your design matrix, and resample based on the created column off that - though in that scenario it might be easier to "handcraft" such a transformation.
Here is one approach
import numpy as np
from sklearn.datasets import make_multilabel_classification
from sklearn.datasets import make_classification
from imblearn.over_sampling import RandomOverSampler
import pandas as pd
X0, y = make_classification()
_, X1 = make_multilabel_classification(n_classes=5, random_state=0)
# transform X1 by creating a powerset...
df_x1 = pd.DataFrame(X1, columns=[f'c{x}' for x in range(X1.shape[1])])
df_x1 = pd.merge(df_x1, df_x1.drop_duplicates().reset_index()).rename(columns={"index":"dummy"})
print(df_x1['dummy'].value_counts()) # shows imbalance
df_x1 = df_x1.reset_index() # so that we know which rows are resampled
df_y1 = df_x1['dummy']
df_x1 = df_x1[[x for x in df_x1.columns if x != 'dummy']]
ros = RandomOverSampler()
X_sample, _ = ros.fit_resample(df_x1, df_y1) # this is the resampled index
X = np.hstack([X0, X1])
X_res, y_res = X[X_sample['index'], :], y[X_sample['index']]
Where the secret sauce really is this bit:
df_x1 = pd.merge(df_x1, df_x1.drop_duplicates().reset_index()).rename(columns={"index":"dummy"})
Which re-indexes based on the selected 5 columns
df_x1 = df_x1.reset_index()
Which is then used in the RandomOverSampler, and would guarantee the 5 columns would be balanced.
Finally, we can select the indices of the sampling, to generate a dataset and labels which has been successfully resampled across both X0, X1, y
X = np.hstack([X0, X1])
X_res, y_res = X[X_sample['index'], :], y[X_sample['index']]

How to overfit data with Keras?

I'm trying to build a simple regression model using keras and tensorflow. In my problem I have data in the form (x, y), where x and y are simply numbers. I'd like to build a keras model in order to predict y using x as an input.
Since I think images better explains thing, these are my data:
We may discuss if they are good or not, but in my problem I cannot really cheat them.
My keras model is the following (data are splitted 30% test (X_test, y_test) and 70% training (X_train, y_train)):
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(32, input_shape=() activation="relu", name="first_layer"))
model.add(tf.keras.layers.Dense(16, activation="relu", name="second_layer"))
model.add(tf.keras.layers.Dense(1, name="output_layer"))
model.compile(loss = "mean_squared_error", optimizer = "adam", metrics=["mse"] )
history = model.fit(X_train, y_train, epochs=500, batch_size=1, verbose=0, shuffle=False)
eval_result = model.evaluate(X_test, y_test)
print("\n\nTest loss:", eval_result, "\n")
predict_Y = model.predict(X)
note: X contains both X_test and X_train.
Plotting the prediction I get (blue squares are the prediction predict_Y)
I'm playing a lot with layers, activation funztions and other parameters. My goal is to find the best parameters to train the model, but the actual question, here, is slightly different: in fact I have hard times to force the model to overfit the data (as you can see from the above results).
Does anyone have some sort of idea about how to reproduce overfitting?
This is the outcome I would like to get:
(red dots are under blue squares!)
EDIT:
Here I provide you the data used in the example above: you can copy paste directly to a python interpreter:
X_train = [0.704619794270697, 0.6779457393024553, 0.8207082120250023, 0.8588819357831449, 0.8692320257603844, 0.6878750931810429, 0.9556331888763945, 0.77677964510883, 0.7211381534179618, 0.6438319113259414, 0.6478339581502052, 0.9710222750072649, 0.8952188423349681, 0.6303124926673513, 0.9640316662124185, 0.869691568491902, 0.8320164648420931, 0.8236399177660375, 0.8877334038470911, 0.8084042532069621, 0.8045680821762038]
y_train = [0.7766424210611557, 0.8210846773655833, 0.9996114311913593, 0.8041331063189883, 0.9980525368790883, 0.8164056182686034, 0.8925487603333683, 0.7758207470960685, 0.37345286573743475, 0.9325789202459493, 0.6060269037514895, 0.9319771743389491, 0.9990691225991941, 0.9320002808310418, 0.9992560731072977, 0.9980241561997089, 0.8882905258641204, 0.4678339275898943, 0.9312152374846061, 0.9542371205095945, 0.8885893668675711]
X_test = [0.9749191829308574, 0.8735366740730178, 0.8882783211709133, 0.8022891400991644, 0.8650601322313454, 0.8697902997857514, 1.0, 0.8165876695985228, 0.8923841531760973]
y_test = [0.975653685270635, 0.9096752789481569, 0.6653736469114154, 0.46367666660348744, 0.9991817903431941, 1.0, 0.9111205717076893, 0.5264993912088891, 0.9989199241685126]
X = [0.704619794270697, 0.77677964510883, 0.7211381534179618, 0.6478339581502052, 0.6779457393024553, 0.8588819357831449, 0.8045680821762038, 0.8320164648420931, 0.8650601322313454, 0.8697902997857514, 0.8236399177660375, 0.6878750931810429, 0.8923841531760973, 0.8692320257603844, 0.8877334038470911, 0.8735366740730178, 0.8207082120250023, 0.8022891400991644, 0.6303124926673513, 0.8084042532069621, 0.869691568491902, 0.9710222750072649, 0.9556331888763945, 0.8882783211709133, 0.8165876695985228, 0.6438319113259414, 0.8952188423349681, 0.9749191829308574, 1.0, 0.9640316662124185]
Y = [0.7766424210611557, 0.7758207470960685, 0.37345286573743475, 0.6060269037514895, 0.8210846773655833, 0.8041331063189883, 0.8885893668675711, 0.8882905258641204, 0.9991817903431941, 1.0, 0.4678339275898943, 0.8164056182686034, 0.9989199241685126, 0.9980525368790883, 0.9312152374846061, 0.9096752789481569, 0.9996114311913593, 0.46367666660348744, 0.9320002808310418, 0.9542371205095945, 0.9980241561997089, 0.9319771743389491, 0.8925487603333683, 0.6653736469114154, 0.5264993912088891, 0.9325789202459493, 0.9990691225991941, 0.975653685270635, 0.9111205717076893, 0.9992560731072977]
Where X contains the list of the x values and Y the corresponding y value. (X_test, y_test) and (X_train, y_train) are two (non overlapping) subset of (X, Y).
To predict and show the model results I simply use matplotlib (imported as plt):
predict_Y = model.predict(X)
plt.plot(X, Y, "ro", X, predict_Y, "bs")
plt.show()
Overfitted models are rarely useful in real life. It appears to me that OP is well aware of that but wants to see if NNs are indeed capable of fitting (bounded) arbitrary functions or not. On one hand, the input-output data in the example seems to obey no discernible pattern. On the other hand, both input and output are scalars in [0, 1] and there are only 21 data points in the training set.
Based on my experiments and results, we can indeed overfit as requested. See the image below.
Numerical results:
x y_true y_pred error
0 0.704620 0.776642 0.773753 -0.002889
1 0.677946 0.821085 0.819597 -0.001488
2 0.820708 0.999611 0.999813 0.000202
3 0.858882 0.804133 0.805160 0.001026
4 0.869232 0.998053 0.997862 -0.000190
5 0.687875 0.816406 0.814692 -0.001714
6 0.955633 0.892549 0.893117 0.000569
7 0.776780 0.775821 0.779289 0.003469
8 0.721138 0.373453 0.374007 0.000554
9 0.643832 0.932579 0.912565 -0.020014
10 0.647834 0.606027 0.607253 0.001226
11 0.971022 0.931977 0.931549 -0.000428
12 0.895219 0.999069 0.999051 -0.000018
13 0.630312 0.932000 0.930252 -0.001748
14 0.964032 0.999256 0.999204 -0.000052
15 0.869692 0.998024 0.997859 -0.000165
16 0.832016 0.888291 0.887883 -0.000407
17 0.823640 0.467834 0.460728 -0.007106
18 0.887733 0.931215 0.932790 0.001575
19 0.808404 0.954237 0.960282 0.006045
20 0.804568 0.888589 0.906829 0.018240
{'me': -0.00015776709314323828,
'mae': 0.00329163070145315,
'mse': 4.0713782563067185e-05,
'rmse': 0.006380735268216915}
OP's code seems good to me. My changes were minor:
Use deeper networks. It may not actually be necessary to use a depth of 30 layers but since we just want to overfit, I didn't experiment too much with what's the minimum depth needed.
Each Dense layer has 50 units. Again, this may be overkill.
Added batch normalization layer every 5th dense layer.
Decreased learning rate by half.
Ran optimization for longer using the all 21 training examples in a batch.
Used MAE as objective function. MSE is good but since we want to overfit, I want to penalize small errors the same way as large errors.
Random numbers are more important here because data appears to be arbitrary. Though, you should get similar results if you change random number seed and let the optimizer run long enough. In some cases, optimization does get stuck in a local minima and it would not produce overfitting (as requested by OP).
The code is below.
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, BatchNormalization
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
# Set seed just to have reproducible results
np.random.seed(84)
tf.random.set_seed(84)
# Load data from the post
# https://stackoverflow.com/questions/61252785/how-to-overfit-data-with-keras
X_train = np.array([0.704619794270697, 0.6779457393024553, 0.8207082120250023,
0.8588819357831449, 0.8692320257603844, 0.6878750931810429,
0.9556331888763945, 0.77677964510883, 0.7211381534179618,
0.6438319113259414, 0.6478339581502052, 0.9710222750072649,
0.8952188423349681, 0.6303124926673513, 0.9640316662124185,
0.869691568491902, 0.8320164648420931, 0.8236399177660375,
0.8877334038470911, 0.8084042532069621,
0.8045680821762038])
Y_train = np.array([0.7766424210611557, 0.8210846773655833, 0.9996114311913593,
0.8041331063189883, 0.9980525368790883, 0.8164056182686034,
0.8925487603333683, 0.7758207470960685,
0.37345286573743475, 0.9325789202459493,
0.6060269037514895, 0.9319771743389491, 0.9990691225991941,
0.9320002808310418, 0.9992560731072977, 0.9980241561997089,
0.8882905258641204, 0.4678339275898943, 0.9312152374846061,
0.9542371205095945, 0.8885893668675711])
X_test = np.array([0.9749191829308574, 0.8735366740730178, 0.8882783211709133,
0.8022891400991644, 0.8650601322313454, 0.8697902997857514,
1.0, 0.8165876695985228, 0.8923841531760973])
Y_test = np.array([0.975653685270635, 0.9096752789481569, 0.6653736469114154,
0.46367666660348744, 0.9991817903431941, 1.0,
0.9111205717076893, 0.5264993912088891, 0.9989199241685126])
X = np.array([0.704619794270697, 0.77677964510883, 0.7211381534179618,
0.6478339581502052, 0.6779457393024553, 0.8588819357831449,
0.8045680821762038, 0.8320164648420931, 0.8650601322313454,
0.8697902997857514, 0.8236399177660375, 0.6878750931810429,
0.8923841531760973, 0.8692320257603844, 0.8877334038470911,
0.8735366740730178, 0.8207082120250023, 0.8022891400991644,
0.6303124926673513, 0.8084042532069621, 0.869691568491902,
0.9710222750072649, 0.9556331888763945, 0.8882783211709133,
0.8165876695985228, 0.6438319113259414, 0.8952188423349681,
0.9749191829308574, 1.0, 0.9640316662124185])
Y = np.array([0.7766424210611557, 0.7758207470960685, 0.37345286573743475,
0.6060269037514895, 0.8210846773655833, 0.8041331063189883,
0.8885893668675711, 0.8882905258641204, 0.9991817903431941, 1.0,
0.4678339275898943, 0.8164056182686034, 0.9989199241685126,
0.9980525368790883, 0.9312152374846061, 0.9096752789481569,
0.9996114311913593, 0.46367666660348744, 0.9320002808310418,
0.9542371205095945, 0.9980241561997089, 0.9319771743389491,
0.8925487603333683, 0.6653736469114154, 0.5264993912088891,
0.9325789202459493, 0.9990691225991941, 0.975653685270635,
0.9111205717076893, 0.9992560731072977])
# Reshape all data to be of the shape (batch_size, 1)
X_train = X_train.reshape((-1, 1))
Y_train = Y_train.reshape((-1, 1))
X_test = X_test.reshape((-1, 1))
Y_test = Y_test.reshape((-1, 1))
X = X.reshape((-1, 1))
Y = Y.reshape((-1, 1))
# Is data scaled? NNs do well with bounded data.
assert np.all(X_train >= 0) and np.all(X_train <= 1)
assert np.all(Y_train >= 0) and np.all(Y_train <= 1)
assert np.all(X_test >= 0) and np.all(X_test <= 1)
assert np.all(Y_test >= 0) and np.all(Y_test <= 1)
assert np.all(X >= 0) and np.all(X <= 1)
assert np.all(Y >= 0) and np.all(Y <= 1)
# Build a model with variable number of hidden layers.
# We will use Keras functional API.
# https://www.perfectlyrandom.org/2019/06/24/a-guide-to-keras-functional-api/
n_dense_layers = 30 # increase this to get more complicated models
# Define the layers first.
input_tensor = Input(shape=(1,), name='input')
layers = []
for i in range(n_dense_layers):
layers += [Dense(units=50, activation='relu', name=f'dense_layer_{i}')]
if (i > 0) & (i % 5 == 0):
# avg over batches not features
layers += [BatchNormalization(axis=1)]
sigmoid_layer = Dense(units=1, activation='sigmoid', name='sigmoid_layer')
# Connect the layers using Keras Functional API
mid_layer = input_tensor
for dense_layer in layers:
mid_layer = dense_layer(mid_layer)
output_tensor = sigmoid_layer(mid_layer)
model = Model(inputs=[input_tensor], outputs=[output_tensor])
optimizer = Adam(learning_rate=0.0005)
model.compile(optimizer=optimizer, loss='mae', metrics=['mae'])
model.fit(x=[X_train], y=[Y_train], epochs=40000, batch_size=21)
# Predict on various datasets
Y_train_pred = model.predict(X_train)
# Create a dataframe to inspect results manually
train_df = pd.DataFrame({
'x': X_train.reshape((-1)),
'y_true': Y_train.reshape((-1)),
'y_pred': Y_train_pred.reshape((-1))
})
train_df['error'] = train_df['y_pred'] - train_df['y_true']
print(train_df)
# A dictionary to store all the errors in one place.
train_errors = {
'me': np.mean(train_df['error']),
'mae': np.mean(np.abs(train_df['error'])),
'mse': np.mean(np.square(train_df['error'])),
'rmse': np.sqrt(np.mean(np.square(train_df['error']))),
}
print(train_errors)
# Make a plot to visualize true vs predicted
plt.figure(1)
plt.clf()
plt.plot(train_df['x'], train_df['y_true'], 'r.', label='y_true')
plt.plot(train_df['x'], train_df['y_pred'], 'bo', alpha=0.25, label='y_pred')
plt.grid(True)
plt.xlabel('x')
plt.ylabel('y')
plt.title(f'Train data. MSE={np.round(train_errors["mse"], 5)}.')
plt.legend()
plt.show(block=False)
plt.savefig('true_vs_pred.png')
A problem you may encountering is that you don't have enough training data for the model to be able to fit well. In your example, you only have 21 training instances, each with only 1 feature. Broadly speaking with neural network models, you need on the order of 10K or more training instances to produce a decent model.
Consider the following code that generates a noisy sine wave and tries to train a densely-connected feed-forward neural network to fit the data. My model has two linear layers, each with 50 hidden units and a ReLU activation function. The experiments are parameterized with the variable num_points which I will increase.
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(7)
def generate_data(num_points=100):
X = np.linspace(0.0 , 2.0 * np.pi, num_points).reshape(-1, 1)
noise = np.random.normal(0, 1, num_points).reshape(-1, 1)
y = 3 * np.sin(X) + noise
return X, y
def run_experiment(X_train, y_train, X_test, batch_size=64):
num_points = X_train.shape[0]
model = keras.Sequential()
model.add(layers.Dense(50, input_shape=(1, ), activation='relu'))
model.add(layers.Dense(50, activation='relu'))
model.add(layers.Dense(1, activation='linear'))
model.compile(loss = "mse", optimizer = "adam", metrics=["mse"] )
history = model.fit(X_train, y_train, epochs=10,
batch_size=batch_size, verbose=0)
yhat = model.predict(X_test, batch_size=batch_size)
plt.figure(figsize=(5, 5))
plt.plot(X_train, y_train, "ro", markersize=2, label='True')
plt.plot(X_train, yhat, "bo", markersize=1, label='Predicted')
plt.ylim(-5, 5)
plt.title('N=%d points' % (num_points))
plt.legend()
plt.grid()
plt.show()
Here is how I invoke the code:
num_points = 100
X, y = generate_data(num_points)
run_experiment(X, y, X)
Now, if I run the experiment with num_points = 100, the model predictions (in blue) do a terrible job at fitting the true noisy sine wave (in red).
Now, here is num_points = 1000:
Here is num_points = 10000:
And here is num_points = 100000:
As you can see, for my chosen NN architecture, adding more training instances allows the neural network to better (over)fit the data.
If you do have a lot of training instances, then if you want to purposefully overfit your data, you can either increase the neural network capacity or reduce regularization. Specifically, you can control the following knobs:
increase the number of layers
increase the number of hidden units
increase the number of features per data instance
reduce regularization (e.g. by removing dropout layers)
use a more complex neural network architecture (e.g. transformer blocks instead of RNN)
You may be wondering if neural networks can fit arbitrary data rather than just a noisy sine wave as in my example. Previous research says that, yes, a big enough neural network can fit any data. See:
Universal approximation theorem. https://en.wikipedia.org/wiki/Universal_approximation_theorem
Zhang 2016, "Understanding deep learning requires rethinking generalization". https://arxiv.org/abs/1611.03530
As discussed in the comments, you should make a Python array (with NumPy) like this:-
Myarray = [[0.65, 1], [0.85, 0.5], ....]
Then you would just call those specific parts of the array whom you need to predict. Here the first value is the x-axis value. So you would call it to obtain the corresponding pair stored in Myarray
There are many resources to learn these types of things. some of them are ===>
https://www.geeksforgeeks.org/python-using-2d-arrays-lists-the-right-way/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=video&cd=2&cad=rja&uact=8&ved=0ahUKEwjGs-Oxne3oAhVlwTgGHfHnDp4QtwIILTAB&url=https%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3DQgfUT7i4yrc&usg=AOvVaw3LympYRszIYi6_OijMXH72

FastAI PyTorch Train_loss and valid_loss look very good, but the model recognize nothing

Update 1
I’m thinking that it might be the mistake in my detector code.
So, here is my code for using the trained learner/model to predict images.
import requests
import cv2
bytes = b''
stream = requests.get(url, stream=True)
bytes = bytes + stream.raw.read(1024) # I have my mobile video streaming to this url. the resolution for the video streaming is: 2048 x 1080
a = bytes.find(b'\xff\xd8')
b = bytes.find(b'\xff\xd9')
if a != -1 and b != -1:
jpg = bytes[a:b+2]
bytes = bytes[b+2:]
img = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8), cv2.IMREAD_COLOR)
processedImg = Image(pil2tensor(img, np.float32).div_(255))
predict = learn.predict(processedImg)
self.objectClass = predict[0].obj
and I read the document of imdecode() method, it returns image in B G R order.
Could it because of different channel data used when in training and detecting?
Or
Could it because that I trained with image size 299 x 450, but when detecting the input image size from the video streaming is 2048 x 1080 without resizing it?
new to FastAi, ML and Python. I trained my “Birds Or Not-Birds” model. The train_loss, valid_loss and error_rate were improving. If I only trained 3 epochs, then the model worked(meaning it can recognize whether there are birds or no birds in images), then I increased to 30 epochs, all metrics look very good, but the model does not recognize things anymore, whatever images I input, the model always return Not-Birds.
here is the training output:
Here are the plots of learn.recorder
Here is my code:
from fastai.vision import *
from fastai.metrics import error_rate
from fastai.callbacks import EarlyStoppingCallback,SaveModelCallback
from datetime import datetime as dt
from functools import partial
path_img = '/minidata'
train_folder = 'train'
valid_folder = 'validation'
tunedTransform = partial(get_transforms, max_zoom=1.5)
data = ImageDataBunch.from_folder(path=path_img, train=train_folder, valid=valid_folder, ds_tfms=tunedTransform(),
size=(299, 450), bs=40, classes=['birds', 'others'],
resize_method=ResizeMethod.SQUISH)
data = data.normalize(imagenet_stats)
learn = cnn_learner(data, models.resnet50, metrics=error_rate)
learn.fit_one_cycle(30, max_lr=slice(5e-5,5e-4))
learn.recorder.plot_lr()
learn.recorder.plot()
learn.recorder.plot_losses()
Here is my dataset folder structure:
minidata
train
birds (7500 images)
others (around 7300 images)
validation
birds (1008 images)
others (around 872 images)
Your learning rate schedule is sub-optimal for this dataset. Try to first figure out the best learning rate for this network and dataset with
LRFinder. This can be done by exploring the loss behavior for different learning rates with
learn.lr_find()
learn.recorder.plot()
Edit:
It looks like you are re-training the last layer in your network. Instead try training more layers from scratch. as:
learn.unfreeze(2)

Seq2Seq for string reversal

If I have a string, say "abc" and target of that string in reverse, say "cba".
Can a neural network, in particular an encoder-decoder model, learn this mapping? If so, what is the best model to accomplish this.
I ask, as this is a structural translation rather than a simple character mapping as in normal machine translation
If your network is an old-fashioned encoder-decoder model (without attention), then, as #Prune said, it has memory bottleneck (encoder dimensionality). Thus, such a network cannot learn to reverse strings of arbitrary size. However, you can train such an RNN to reverse strings of limited size. For example, the following toy seq2seq LSTM is able to reverse sequences of digits with length up to 10. Here is how you train it:
from keras.models import Model
from keras.layers import Input, LSTM, Dense, Embedding
import numpy as np
emb_dim = 20
latent_dim = 100 # Latent dimensionality of the encoding space.
vocab_size = 12 # digits 0-9, 10 is for start token, 11 for end token
encoder_inputs = Input(shape=(None, ), name='enc_inp')
common_emb = Embedding(input_dim=vocab_size, output_dim=emb_dim)
encoder_emb = common_emb(encoder_inputs)
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_emb)
encoder_states = [state_h, state_c]
decoder_inputs = Input(shape=(None,), name='dec_inp')
decoder_emb = common_emb(decoder_inputs)
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_emb, initial_state=encoder_states)
decoder_dense = Dense(vocab_size, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
def generate_batch(length=4, batch_size=64):
x = np.random.randint(low=0, high=10, size=(batch_size, length))
y = x[:, ::-1]
start = np.ones((batch_size, 1), dtype=int) * 10
end = np.ones((batch_size, 1), dtype=int) * 11
enc_x = np.concatenate([start, x], axis=1)
dec_x = np.concatenate([start, y], axis=1)
dec_y = np.concatenate([y, end], axis=1)
dec_y_onehot = np.zeros(shape=(batch_size, length+1, vocab_size), dtype=int)
for row in range(batch_size):
for col in range(length+1):
dec_y_onehot[row, col, dec_y[row, col]] = 1
return [enc_x, dec_x], dec_y_onehot
def generate_batches(batch_size=64, max_length=10):
while True:
length = np.random.randint(low=1, high=max_length)
yield generate_batch(length=length, batch_size=batch_size)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['categorical_accuracy'])
model.fit_generator(generate_batches(), steps_per_epoch=1000, epochs=20)
Now you can apply it to reverse a sequence (my decoder is very inefficient, but it does illustrate the principle)
input_seq = np.array([[10, 2, 1, 2, 8, 5, 0, 6]])
result = np.array([[10]])
next_digit = -1
for i in range(100):
next_digit = model.predict([input_seq, result])[0][-1].argmax()
if next_digit == 11:
break
result = np.concatenate([result, [[next_digit]]], axis=1)
print(result[0][1:])
Hoorray, it prints [6 0 5 8 2 1 2] !
Generally, you can think of such a model as a weird autoencoder (with a reversal side-effect), and choose architecture and training procedure suitable for autoencoders. And there is quite a vast literature about text autoencoders.
Moreover, if you make an encoder-decoder model with attention, then, it will have no memory bottleneck, so, in principle, it is possible to reverse a sequence of any length with a neural network. However, attention requires quadratic computational time, so in practice even neural networks with attention will be very inefficient for long sequences.
I doubt that a NN will learn the abstract structural transformation. Since the string is of unbounded input length, the finite NN won't have the info necessary. NLP processes generally work with identifying small blocks and simple context-sensitive shifts. I don't think they'd identify the end-to-end swaps needed.
However, I expect that an image processor, adapted to a single dimension, would learn this quite quickly. Some can learn how to rotate a sub-image.

Resources