Here is the network diagram I am working on and data is tabular and structured,
On the left, we have some abilities which are continuous features and on the right, we could have 'N' number of modifiers. Each modifier has modifier_type which is categorical and some statistics which are continuous features.
If it was only one modifier here is the code that works just fine!
import keras.backend as K
from keras.models import Model
from keras.layers import Input, Embedding, concatenate
from keras.layers import Dense, GlobalMaxPooling1D, Reshape
from keras.optimizers import Adam
K.clear_session()
# Using embeddings for categorical features
modifier_type_embedding_in=[]
modifier_type_embedding_out=[]
# sample categorical features
categorical_features = ['modifier_type']
modifier_input_ = Input(shape=(1,), name='modifier_type_in')
# Let's assume 10 unique type of modifiers and let's have embedding dimension as 6
modifier_output_ = Embedding(input_dim=10, output_dim=6, name='modifier_type')(modifier_input_)
modifier_output_ = Reshape(target_shape=(6,))(modifier_output_)
modifier_type_embedding_in.append(modifier_input_)
modifier_type_embedding_out.append(modifier_output_)
# sample continuous features
statistics = ['duration']
statistics_inputs =[Input(shape=(len(statistics),), name='statistics')] # Input(shape=(1,))
# sample continuous features
abilities = ['buyback_cost', 'cooldown', 'number_of_deaths', 'ability', 'teleport', 'team', 'level', 'max_mana', 'intelligence']
abilities_inputs=[Input(shape=(len(abilities),), name='abilities')] # Input(shape=(9,))
concat = concatenate(modifier_type_embedding_out + statistics_inputs)
FC_relu = Dense(128, activation='relu', name='fc_relu_1')(concat)
FC_relu = Dense(128, activation='relu', name='fc_relu_2')(FC_relu)
model = concatenate(abilities_inputs + [FC_relu])
model = Dense(64, activation='relu', name='fc_relu_3')(model)
model_out = Dense(1, activation='sigmoid', name='fc_sigmoid')(model)
model_in = abilities_inputs + modifier_type_embedding_in + statistics_inputs
model = Model(inputs=model_in, outputs=model_out)
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=2e-05, decay=1e-3), metrics=['accuracy'])
However, while compiling for 'N' number of modifiers I get below error and below are the changes I made in code,
modifier_input_ = Input(shape=(None, 1,), name='modifier_type_in')
statistics_inputs =[Input(shape=(None, len(statistics),), name='statistics')] # Input(shape=(None, 1,))
FC_relu = Dense(128, activation='relu', name='fc_relu_2')(FC_relu)
max_pool = GlobalMaxPooling1D()(FC_relu)
model = concatenate(abilities_inputs + [max_pool])
Here is what I get,
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-3-7703088b1d24> in <module>
22 abilities_inputs=[Input(shape=(len(abilities),), name='abilities')] # Input(shape=(9,))
23
---> 24 concat = concatenate(modifier_type_embedding_out + statistics_inputs)
25 FC_relu = Dense(128, activation='relu', name='fc_relu_1')(concat)
26 FC_relu = Dense(128, activation='relu', name='fc_relu_2')(FC_relu)
e:\Miniconda3\lib\site-packages\keras\layers\merge.py in concatenate(inputs, axis, **kwargs)
647 A tensor, the concatenation of the inputs alongside axis `axis`.
648 """
--> 649 return Concatenate(axis=axis, **kwargs)(inputs)
650
651
e:\Miniconda3\lib\site-packages\keras\engine\base_layer.py in __call__(self, inputs, **kwargs)
423 'You can build it manually via: '
424 '`layer.build(batch_input_shape)`')
--> 425 self.build(unpack_singleton(input_shapes))
426 self.built = True
427
e:\Miniconda3\lib\site-packages\keras\layers\merge.py in build(self, input_shape)
360 'inputs with matching shapes '
361 'except for the concat axis. '
--> 362 'Got inputs shapes: %s' % (input_shape))
363
364 def _merge_function(self, inputs):
ValueError: A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got inputs shapes: [(None, 6), (None, None, 1)]
How do I use the embedding layer within a neural network designed to accept variable input length features?
The answer is,
import keras.backend as K
from keras.models import Model
from keras.layers import Input, Embedding, concatenate
from keras.layers import Dense, GlobalMaxPooling1D, Reshape
from keras.optimizers import Adam
K.clear_session()
# Using embeddings for categorical features
modifier_type_embedding_in=[]
modifier_type_embedding_out=[]
# sample categorical features
categorical_features = ['modifier_type']
modifier_input_ = Input(shape=(None,), name='modifier_type_in')
# Let's assume 10 unique type of modifiers and let's have embedding dimension as 6
modifier_output_ = Embedding(input_dim=10, output_dim=6, name='modifier_type')(modifier_input_)
modifier_type_embedding_in.append(modifier_input_)
modifier_type_embedding_out.append(modifier_output_)
# sample continuous features
statistics = ['duration']
statistics_inputs =[Input(shape=(None, len(statistics),), name='statistics')] # Input(shape=(1,))
# sample continuous features
abilities = ['buyback_cost', 'cooldown', 'number_of_deaths', 'ability', 'teleport', 'team', 'level', 'max_mana', 'intelligence']
abilities_inputs=[Input(shape=(len(abilities),), name='abilities')] # Input(shape=(9,))
concat = concatenate(modifier_type_embedding_out + statistics_inputs)
FC_relu = Dense(128, activation='relu', name='fc_relu_1')(concat)
FC_relu = Dense(128, activation='relu', name='fc_relu_2')(FC_relu)
max_pool = GlobalMaxPooling1D()(FC_relu)
model = concatenate(abilities_inputs + [max_pool])
model = Dense(64, activation='relu', name='fc_relu_3')(model)
model_out = Dense(1, activation='sigmoid', name='fc_sigmoid')(model)
model_in = abilities_inputs + modifier_type_embedding_in + statistics_inputs
model = Model(inputs=model_in, outputs=model_out)
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=2e-05, decay=1e-3), metrics=['accuracy'])
Related
I am attempting to train an LSTM autoencoder on some data with shape (21785, 160, 8). If I run the following code
import numpy as np
from keras.layers import Input, Dense, LSTM, TimeDistributed
from keras import regularizers, models, optimizers
from keras.optimizers import Adam
data = np.random.random(size=(21785,160,8))
timesteps = 160
input_dim = 8
latent_dim = 1
learning_rate = 1e-4
regularization = 5e-4
epochs=3
inputs = keras.Input(shape=(timesteps, input_dim))
encoded = layers.LSTM(latent_dim, activation='relu',
kernel_regularizer=regularizers.l2(regularization))(inputs)
decoded = layers.RepeatVector(timesteps)(encoded)
decoded = layers.LSTM(input_dim, return_sequences=True, activation='relu',
kernel_regularizer=regularizers.l2(regularization))(decoded)
sequence_autoencoder = keras.Model(inputs, decoded)
encoder = keras.Model(inputs, encoded)
encoder.compile(optimizer=Adam(lr=learning_rate), loss='mean_squared_error')
encoder.fit(data, data, epochs=epochs, batch_size=5, shuffle=False, verbose=True)
I get an error
ValueError: Dimensions must be equal, but are 5 and 160 for '{{node
mean_squared_error/SquaredDifference}} =
SquaredDifference[T=DT_FLOAT](model_3/lstm_2/strided_slice_3,
IteratorGetNext:1)' with input shapes: [5,1], [5,160,8].
However, if I reduce the batch_size = 1 then the code runs. What am I doing wrong?
I am trying to use cnn-lstm model on this dataset. I've stored this dataset in dataframe named as df. there are totally 11 column in this dataset but i am just mentioning 9 columns here. All columns have numerical values only
Area book_hotel votes location hotel_type Total_Price Facilities Dine rate
6 0 0 1 163 400 22 7 4.4
19 1 2 7 122 220 28 11 4.6
X=df.drop(['rate'],axis=1)
Y=df['rate']
x_train, x_test, y_train, y_test = train_test_split(np.asarray(X), np.asarray(Y), test_size=0.33, shuffle= True)
x_train has shape (3350,10) and
x_test has shape (1650, 10)
# The known number of output classes.
num_classes = 10
# Input image dimensions
input_shape = (10,)
# Convert class vectors to binary class matrices. This uses 1 hot encoding.
y_train_binary = keras.utils.to_categorical(y_train, num_classes)
y_test_binary = keras.utils.to_categorical(y_test, num_classes)
x_train = x_train.reshape(3350, 10,1)
x_test = x_test.reshape(1650, 10,1)
input_layer = Input(shape=(10, 1))
conv1 = Conv1D(filters=32,
kernel_size=8,
strides=1,
activation='relu',
padding='same')(input_layer)
lstm1 = LSTM(32, return_sequences=True)(conv1)
output_layer = Dense(1, activation='sigmoid')(lstm1)
model = Model(inputs=input_layer, outputs=output_layer)
model.summary()
model.compile(loss='mse',optimizer='adam')
Finally when i am trying to fit the model with input
model.fit(x_train,y_train)
ValueError Traceback (most recent call last)
<ipython-input-170-4719cf73997a> in <module>()
----> 1 model.fit(x_train,y_train)
2 frames
/usr/local/lib/python3.6/dist-packages/keras/engine/training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
133 ': expected ' + names[i] + ' to have ' +
134 str(len(shape)) + ' dimensions, but got array '
--> 135 'with shape ' + str(data_shape))
136 if not check_batch_axis:
137 data_shape = data_shape[1:]
ValueError: Error when checking target: expected dense_2 to have 3 dimensions, but got array with shape (3350, 1)
Can someone please help me resolving this error
I see some problem in your code...
the last dimension output must be equal to the number of class and with multiclass tasks you need to apply a softmax activation: Dense(num_classes, activation='softmax')
you must set return_sequences=False in your last lstm cell because you need a 2D output and not a 3D
you must use categorical_crossentropy as loss function with one-hot encoded target
here a complete dummy example...
num_classes = 10
n_sample = 1000
X = np.random.uniform(0,1, (n_sample,10,1))
y = tf.keras.utils.to_categorical(np.random.randint(0,num_classes, n_sample))
input_layer = Input(shape=(10, 1))
conv1 = Conv1D(filters=32,
kernel_size=8,
strides=1,
activation='relu',
padding='same')(input_layer)
lstm1 = LSTM(32, return_sequences=False)(conv1)
output_layer = Dense(num_classes, activation='softmax')(lstm1)
model = Model(inputs=input_layer, outputs=output_layer)
model.compile(loss='categorical_crossentropy',optimizer='adam')
model.fit(X,y, epochs=5)
Im working on a speaker recognition Neural Network.
What I am doing is taking wav files [ of the Bing Bang Theory first espiode :-) ], than convert it to MFCC coeffs than I make it as an input to an open source api of Neural Network (MLPClassifier) and as output I define a unique vector to each speaker ( Let's say : [1,0,0,0] - sheldon; [0,1,0,0] - Penny; and ect... ), I take 50 random values for testing and the others for fitting ( training )
This is my code, At the begining I got about random accucary for the NN but after some help of amazing guy I improved it to ~42% but I want more :) about 70% :
from sklearn.neural_network import MLPClassifier
import python_speech_features
import scipy.io.wavfile as wav
import numpy as np
from os import listdir
from os.path import isfile, join
from random import shuffle
import matplotlib.pyplot as plt
from tqdm import tqdm
from random import randint
import random
winner = [] # this array count how much Bingo we had when we test the NN
random_winner = []
win_len = 0.04 # in seconds
step = win_len / 2
nfft = 2048
for TestNum in tqdm(range(20)): # in every round we build NN with X,Y that out of them we check 50 after we build the NN
X = []
Y = []
onlyfiles = [f for f in listdir("FinalAudios/") if isfile(join("FinalAudios/", f))] # Files in dir
names = [] # names of the speakers
for file in onlyfiles: # for each wav sound
# UNESSECERY TO UNDERSTAND THE CODE
if " " not in file.split("_")[0]:
names.append(file.split("_")[0])
else:
names.append(file.split("_")[0].split(" ")[0])
only_speakers = [] + names
#print only_speakers
names = list(dict.fromkeys(names)) # names of speakers
print names
vector_names = [] # vector for each name
i = 0
vector_for_each_name = [0] * len(names)
for name in names:
vector_for_each_name[i] += 1
vector_names.append(np.array(vector_for_each_name))
vector_for_each_name[i] -= 1
i += 1
for f in onlyfiles:
if " " not in f.split("_")[0]:
f_speaker = f.split("_")[0]
else:
f_speaker = f.split("_")[0].split(" ")[0]
fs, audio = wav.read("FinalAudios/" + f) # read the file
try:
mfcc_feat = python_speech_features.mfcc(audio, samplerate=fs, winlen=win_len,
winstep=step, nfft=nfft, appendEnergy=False)
flat_list = [item for sublist in mfcc_feat for item in sublist]
X.append(np.array(flat_list))
Y.append(np.array(vector_names[names.index(f_speaker)]))
except IndexError:
pass
Z = list(zip(X, Y))
shuffle(Z) # WE SHUFFLE X,Y TO PERFORM RANDOM ON THE TEST LEVEL
X, Y = zip(*Z)
X = list(X)
Y = list(Y)
X = np.asarray(X)
Y = np.asarray(Y)
Y_test = Y[:50] # CHOOSE 50 FOR TEST, OTHERS FOR TRAIN
X_test = X[:50]
X = X[50:]
Y = Y[50:]
print len(X)
clf = MLPClassifier(solver='lbfgs', alpha=3e-2, hidden_layer_sizes=(50, 20), random_state=2) # create the NN
clf.fit(X, Y) # Train it
print list(clf.predict_proba([X[0]])[0])
print list(Y_test[0])
for sample in range(len(X_test)): # add 1 to winner array if we correct and 0 if not, than in the end it plot it
arr = list(clf.predict([X_test[sample]])[0])
if arr.index(max(arr)) == list(Y_test[sample]).index(1):
winner.append(1)
else:
winner.append(0)
if only_speakers[randint(0, len(only_speakers) - 1)] == only_speakers[randint(0, len(only_speakers) - 1)]:
random_winner.append(1)
else:
random_winner.append(0)
# plot winner
plot_x = []
plot_y = []
for i in range(1, len(winner)):
plot_y.append(sum(winner[0:i])*1.0/len(winner[0:i]))
plot_x.append(i)
plot_random_x = []
plot_random_y = []
for i in range(1, len(random_winner)):
plot_random_y.append(sum(random_winner[0:i])*1.0/len(random_winner[0:i]))
plot_random_x.append(i)
plt.plot(plot_x, plot_y, 'r', label='machine learning')
plt.plot(plot_random_x, plot_random_y, 'b', label='random')
plt.xlabel('Number Of Samples')
# naming the y axis
plt.ylabel('Success Rate')
# giving a title to my graph
plt.title('Success Rate : Random Vs ML!')
# function to show the plot
plt.show()
This is my zip file that contains the code and the audio file : https://ufile.io/eggjm1gw
Somebody have an idea how can I improve my accucary?
Edit :
I improved my data set and put convolution model and got 60% accucarry, which is ok but also not good enoguh
import python_speech_features
import scipy.io.wavfile as wav
import numpy as np
from os import listdir
import os
import shutil
from os.path import isfile, join
from random import shuffle
from matplotlib import pyplot
from tqdm import tqdm
from random import randint
import tensorflow as tf
from ast import literal_eval as str2arr
from tempfile import TemporaryFile
#win_len = 0.04 # in seconds
#step = win_len / 2
#nfft = 2048
win_len = 0.05 # in seconds
step = win_len
nfft = 16384
results = []
outfile_x = None
outfile_y = None
winner = []
for TestNum in tqdm(range(40)): # We check it several times
if not outfile_x: # if path not exist we create it
X = [] # inputs
Y = [] # outputs
onlyfiles = [f for f in listdir("FinalAudios") if isfile(join("FinalAudios", f))] # Files in dir
names = [] # names of the speakers
for file in onlyfiles: # for each wav sound
# UNESSECERY TO UNDERSTAND THE CODE
if " " not in file.split("_")[0]:
names.append(file.split("_")[0])
else:
names.append(file.split("_")[0].split(" ")[0])
only_speakers = [] + names
namesWithoutDuplicate = list(dict.fromkeys(names))
namesWithoutDuplicateCopy = namesWithoutDuplicate[:]
for name in namesWithoutDuplicateCopy: # we remove low samples files
if names.count(name) < 107:
namesWithoutDuplicate.remove(name)
names = namesWithoutDuplicate
print(names) # print it
vector_names = [] # output for each name
i = 0
for name in names:
vector_for_each_name = i
vector_names.append(np.array(vector_for_each_name))
i += 1
for f in onlyfiles: # for all the files
if " " not in f.split("_")[0]:
f_speaker = f.split("_")[0]
else:
f_speaker = f.split("_")[0].split(" ")[0]
if f_speaker in namesWithoutDuplicate:
fs, audio = wav.read("FinalAudios\\" + f) # read the file
try:
# compute MFCC
mfcc_feat = python_speech_features.mfcc(audio, samplerate=fs, winlen=win_len, winstep=step, nfft=nfft, appendEnergy=False)
#flat_list = [item for sublist in mfcc_feat for item in sublist]
# Create output + inputs
for i in mfcc_feat:
X.append(np.array(i))
Y.append(np.array(vector_names[names.index(f_speaker)]))
except IndexError:
pass
else:
if not os.path.exists("TooLowSamples"): # if path not exist we create it
os.makedirs("TooLowSamples")
shutil.move("FinalAudios\\" + f, "TooLowSamples\\" + f)
outfile_x = TemporaryFile()
np.save(outfile_x, X)
outfile_y = TemporaryFile()
np.save(outfile_y, Y)
# ------------------- RANDOMIZATION, UNNECESSARY TO UNDERSTAND THE CODE ------------------- #
else:
outfile_x.seek(0)
X = np.load(outfile_x)
outfile_y.seek(0)
Y = np.load(outfile_y)
Z = list(zip(X, Y))
shuffle(Z) # WE SHUFFLE X,Y TO PERFORM RANDOM ON THE TEST LEVEL
X, Y = zip(*Z)
X = list(X)
Y = list(Y)
lenX = len(X)
# ------------------- RANDOMIZATION, UNNECESSARY TO UNDERSTAND THE CODE ------------------- #
y_test = np.asarray(Y[:4000]) # CHOOSE 100 FOR TEST, OTHERS FOR TRAIN
x_test = np.asarray(X[:4000]) # CHOOSE 100 FOR TEST, OTHERS FOR TRAIN
x_train = np.asarray(X[4000:]) # CHOOSE 100 FOR TEST, OTHERS FOR TRAIN
y_train = np.asarray(Y[4000:]) # CHOOSE 100 FOR TEST, OTHERS FOR TRAIN
x_val = x_train[-4000:] # FROM THE TRAIN CHOOSE 100 FOR VALIDATION
y_val = y_train[-4000:] # FROM THE TRAIN CHOOSE 100 FOR VALIDATION
x_train = x_train[:-4000] # FROM THE TRAIN CHOOSE 100 FOR VALIDATION
y_train = y_train[:-4000] # FROM THE TRAIN CHOOSE 100 FOR VALIDATION
x_train = x_train.reshape(np.append(x_train.shape, (1, 1))) # RESHAPE FOR INPUT
x_test = x_test.reshape(np.append(x_test.shape, (1, 1))) # RESHAPE FOR INPUT
x_val = x_val.reshape(np.append(x_val.shape, (1, 1))) # RESHAPE FOR INPUT
features_shape = x_val.shape
# -------------- OUR TENSOR FLOW NEURAL NETWORK MODEL -------------- #
model = tf.keras.models.Sequential([
tf.keras.layers.Input(name='inputs', shape=(13, 1, 1), dtype='float32'),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', strides=1, name='block1_conv', input_shape=(13, 1, 1)),
tf.keras.layers.MaxPooling2D((3, 3), strides=(2,2), padding='same', name='block1_pool'),
tf.keras.layers.BatchNormalization(name='block1_norm'),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', strides=1, name='block2_conv',
input_shape=(13, 1, 1)),
tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool'),
tf.keras.layers.BatchNormalization(name='block2_norm'),
tf.keras.layers.Conv2D(32, (3, 3), activation='relu', padding='same', strides=1, name='block3_conv',
input_shape=(13, 1, 1)),
tf.keras.layers.MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool'),
tf.keras.layers.BatchNormalization(name='block3_norm'),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu', name='dense'),
tf.keras.layers.BatchNormalization(name='dense_norm'),
tf.keras.layers.Dropout(0.2, name='dropout'),
tf.keras.layers.Dense(10, activation='softmax', name='pred')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# -------------- OUR TENSOR FLOW NEURAL NETWORK MODEL -------------- #
print("fitting")
history = model.fit(x_train, y_train, epochs=15, validation_data=(x_val, y_val))
print("testing")
results.append(model.evaluate(x_test, y_test)[1])
print(results)
print(sum(results)/len(results))
for i in range(10000):
f_1 = only_speakers[randint(0, len(only_speakers) - 1)]
f_2 = only_speakers[randint(0, len(only_speakers) - 1)]
if " " not in f_1.split("_")[0]:
f_speaker_1 = f_1.split("_")[0]
else:
f_speaker_1 =f_1.split("_")[0].split(" ")[0]
if " " not in f_2.split("_")[0]:
f_speaker_2 = f_2.split("_")[0]
else:
f_speaker_2 =f_2.split("_")[0].split(" ")[0]
if f_speaker_2 == f_speaker_1:
winner.append(1)
else:
winner.append(0)
print(sum(winner)/len(winner))
#]
# if onlyfiles[randint(len(onlyfiles) - 1)] == onlyfiles[randint(len(onlyfiles) - 1)]
#pyplot.plot(history.history['loss'], label='train')
#pyplot.plot(history.history['val_loss'], label='test') Q
#pyplot.legend()
#pyplot.show()
Readin your post these are the following things I could suggest you fix/explore
42% is not that impressive of an accuracy for the task you have at hand, consider the way you are cross-validating e.g. how do you split between a validation, test and training dataset
Your dataset seems very limited. Your task is to identify the speaker. A single episode might not be enough data for this task.
You might want to consider Deep Neural Network libraries such as Keras and Tensorflow. Convolutions is something you can apply directly to the MFC Graph.
If you decide using Tensorflow or Keras consider Triplet-Loss, where you preset a positive and negative example.
Consider reading the current state of the art for your task: https://github.com/grausof/keras-sincnet
Consider reading https://arxiv.org/abs/1503.03832 and adopting it for speech recognition.
The easiest thing you can do to improve your results is adding CNN layers to extract features from the MFCC
I want to do a ensemble of resnet50 and desnsenet121, but got an error:
Graph disconnected: cannot obtain value for tensor Tensor("input_8:0", shape=(?, 224, 224, 3), dtype=float32) at layer "input_8". The following previous layers were accessed without issue: []
Below is my code for ensembling:
from keras import applications
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D
from keras.models import Model, Input
#from keras.engine.topology import Input
from keras.layers import Average
def resnet50():
base_model = applications.resnet50.ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))
last = base_model.output
x = Flatten()(last)
x = Dense(2000, activation='relu')(x)
preds = Dense(200, activation='softmax')(x)
model = Model(base_model.input, preds)
return model
def densenet121():
base_model = applications.densenet.DenseNet121(weights='imagenet', include_top=False, input_shape=(224,224, 3))
last = base_model.output
x = Flatten()(last)
x = Dense(2000, activation='relu')(x)
preds = Dense(200, activation='softmax')(x)
model = Model(base_model.input, preds)
return model
resnet50_model = resnet50()
densenet121_model = densenet121()
ensembled_models = [resnet50_model,densenet121_model]
def ensemble(models,model_input):
outputs = [model.outputs[0] for model in models]
y = Average()(outputs)
model = Model(model_input,y,name='ensemble')
return model
model_input = Input(shape=(224,224,3))
ensemble_model = ensemble(ensembled_models,model_input)
I thought the reason is when I combine reset50 and densenet121, they have their own input layer, even though I make the input shape to be the same. Different input layer leads to conflict. That's just my guess and I am not sure how to fix it
You can set input_tensor=model_input when creating the base models.
def resnet50(model_input):
base_model = applications.resnet50.ResNet50(weights='imagenet', include_top=False, input_tensor=model_input)
# ...
def densenet121(model_input):
base_model = applications.densenet.DenseNet121(weights='imagenet', include_top=False, input_tensor=model_input)
# ...
model_input = Input(shape=(224, 224, 3))
resnet50_model = resnet50(model_input)
densenet121_model = densenet121(model_input)
The base models will then use the provided model_input tensor instead of creating separate input tensors of their own.
I am using InceptionV3 after fine tuning it to my own data set for a multi class multi label classification problem I made the most important changes like softmax to sigmoid and I am using this loss function
model.compile(loss='binary_crossentropy',optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
but when I predict using the generated model I get a small values like this [ 2.74303748e-04 7.97736086e-03 2.44359515e-04 7.09630767e-05
5.43296163e-04 4.08404367e-03 3.28547925e-01 1.05091414e-04
1.80469989e-03 2.85170972e-03 1.44978316e-04 7.78235449e-03
1.72435939e-02 1.55413849e-02 3.82270187e-01 1.06311939e-03
2.70067930e-01 6.08937175e-04 7.47230020e-04 1.07850268e-04]
the source code is this :(can it be my validation set ?)
import keras
import os
import sys
import glob
import argparse
import matplotlib.pyplot as plt
from keras import __version__
from keras.applications.inception_v3 import InceptionV3,
preprocess_input
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras.preprocessing.image import ImageDataGenerator
from keras.optimizers import SGD
IM_WIDTH, IM_HEIGHT = 299, 299 #fixed size for InceptionV3
NB_EPOCHS = 3
BAT_SIZE = 32
FC_SIZE = 1024
NB_IV3_LAYERS_TO_FREEZE = 172
def get_nb_files(directory):
"""Get number of files by searching directory recursively"""
if not os.path.exists(directory):
return 0
cnt = 0
for r, dirs, files in os.walk(directory):
for dr in dirs:
cnt += len(glob.glob(os.path.join(r, dr + "/*")))
return cnt
def setup_to_transfer_learn(model, base_model):
"""Freeze all layers and compile the model"""
for layer in base_model.layers:
layer.trainable = False
#model.compile(optimizer='rmsprop', loss='categorical_crossentropy',
#metrics=['accuracy'])
model.compile(loss='binary_crossentropy',
optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
def add_new_last_layer(base_model, nb_classes):
"""Add last layer to the convnet
Args:
base_model: keras model excluding top
nb_classes: # of classes
Returns:
new keras model with last layer
"""
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(FC_SIZE, activation='relu')(x) #new FC layer, random init
predictions = Dense(nb_classes, activation='sigmoid')(x)
model = Model(input=base_model.input, output=predictions)
return model
def setup_to_finetune(model):
"""Freeze the bottom NB_IV3_LAYERS and retrain the remaining top
layers.
note: NB_IV3_LAYERS corresponds to the top 2 inception blocks in the
inceptionv3 arch
Args:
model: keras model
"""
for layer in model.layers[:NB_IV3_LAYERS_TO_FREEZE]:
layer.trainable = False
for layer in model.layers[NB_IV3_LAYERS_TO_FREEZE:]:
layer.trainable = True
model.compile(loss='binary_crossentropy',
optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
def train(args):
"""Use transfer learning and fine-tuning to train a network on a new
dataset"""
nb_train_samples = get_nb_files(args.train_dir)
nb_classes = len(glob.glob(args.train_dir + "/*"))
nb_val_samples = get_nb_files(args.val_dir)
nb_epoch = int(args.nb_epoch)
batch_size = int(args.batch_size)
# data prep
train_datagen = ImageDataGenerator(
preprocessing_function=preprocess_input,
rotation_range=30,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
test_datagen = ImageDataGenerator(
preprocessing_function=preprocess_input,
rotation_range=30,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True
)
train_generator = train_datagen.flow_from_directory(
args.train_dir,
target_size=(IM_WIDTH, IM_HEIGHT),
batch_size=batch_size,
)
validation_generator = test_datagen.flow_from_directory(
args.val_dir,
target_size=(IM_WIDTH, IM_HEIGHT),
batch_size=batch_size,
)
# setup model
base_model = InceptionV3(weights='imagenet', include_top=False)
#include_top=False excludes final FC layer
model = add_new_last_layer(base_model, nb_classes)
# transfer learning
setup_to_transfer_learn(model, base_model)
history_tl = model.fit_generator(
train_generator,
nb_epoch=nb_epoch,
samples_per_epoch=nb_train_samples,
validation_data=validation_generator,
nb_val_samples=nb_val_samples,
class_weight='auto')
# fine-tuning
setup_to_finetune(model)
history_ft = model.fit_generator(
train_generator,
samples_per_epoch=nb_train_samples,
nb_epoch=nb_epoch,
validation_data=validation_generator,
nb_val_samples=nb_val_samples,
class_weight='auto')
model.save(args.output_model_file)
if args.plot:
plot_training(history_ft)
def plot_training(history):
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'r.')
plt.plot(epochs, val_acc, 'r')
plt.title('Training and validation accuracy')
plt.figure()
plt.plot(epochs, loss, 'r.')
plt.plot(epochs, val_loss, 'r-')
plt.title('Training and validation loss')
plt.show()
if __name__=="__main__":
a = argparse.ArgumentParser()
a.add_argument("--train_dir")
a.add_argument("--val_dir")
a.add_argument("--nb_epoch", default=NB_EPOCHS)
a.add_argument("--batch_size", default=BAT_SIZE)
a.add_argument("--output_model_file", default="inceptionv3-ft.model")
a.add_argument("--plot", action="store_true")
args = a.parse_args()
if args.train_dir is None or args.val_dir is None:
a.print_help()
sys.exit(1)
if (not os.path.exists(args.train_dir)) or (not
os.path.exists(args.val_dir)):
print("directories do not exist")
sys.exit(1)
train(args)
You answer your own question. This is the reason.
I made the most important changes like softmax to sigmoid
Sigmoid function maps the input to the range [0, 1]. Hence the output values of the network are just the outputs of this function and are not class probabilities. Maximum value from the nodes will give you the neuron that has the maximum output and hence the present class.
When you say
but some values should be >0.5(the present classes ) and some others should be <0.5( the non present classes )
in the comments, you are referring to the probability of >0.5 of the present class. What you require for class probabilities is the softmax function.
Therefore replacing your last sigmoid layer with a softmax layer will get you what you think you should be observing.