I am trying to detect circles / ellipses in the image.
The HoughCircle method doesn't work, because these are more eliptic then circle.
Do you have any ideas how to find the "circles"?
Maybe some machine learning method? Like SVM? Because I can create the training dataset which will contains many of these shapes.
Thank you very much for your ideas.
Related
I have image with wood trunks.
I have to detect each wooden trunk individually. It looks similar like following image:
wooden trunks
Do you have any ideas about approaches how to do that?
Should I use Al? Or just machine learning like SVM? Or some pattern recognition algorithm?
Or I can train it.
training dataset
I tried to detect circles/ellipses, but it doesnt have good results.
I also read that wood reflect red color.
But I dont have so much experience with OpenCV, so I dont know which approach is the best for this task.
Thank you for your help
I think retraining YOLO seems like a good option:
https://github.com/AlexeyAB/darknet
You'll need about 2,000 labeled images, plus image augmentation. I've used this library for image augmentation for YOLO:
https://github.com/aleju/imgaug/
I am interested in the possibility of training a TensorFlow model to modify images, but I'm not quite sure where to get started. Almost all of the examples/tutorials dealing with images are for image classification, but I think I am looking for something a little different.
Image classification training data typically includes the images plus a corresponding set of classification labels, but I am thinking of a case of an image plus a "to-be" version of the image as the "label". Is this possible? Is it really just a classification problem in disguise?
Any help on where to get started would be appreciated. Also, the solution does not have to use TensorFlow, so any suggestions on alternate machine learning libraries would also be appreciated.
For example, lets say we want to train TensorFlow to draw circles around objects in a picture.
Example Inbound Image:
(source: pbrd.co)
Label/Expected Output:
(source: pbrd.co)
How could I accomplish that?
I can second that, its really hard to find information about Image modification with tensorflow :( But have a look here: https://affinelayer.com/pix2pix/
From my understanding, you do use a GAN, but insead of feeding the Input of the generator with random data during training, you use a sample Input.
Two popular ways (the ones that I know about) to make models generate/edit images are:
Deep Convolutional Generative Adversarial Networks
Back-Propagation through a pre-trained image classification model (in a similar manner to deep dream) but you can start from the final layer to feed back the wanted label and the gradient descent should be applied to the image only. This was explained in more details in the following course: CS231n (this lecture)
But I don't think they fit the circle around "3" example that you gave. I think object detection and instance segmentation would be more helpful. Detect the object you are looking for, extract its boundaries via segmentation and post-process it to make the circle that you wish for (or any other shape).
Reference for the images: Intro to Deep Learning for Computer Vision
I am a a beginner in machine learning and currently trying to learn about deep learning and convNets. I have been following the tutorials on tensorflow.org and have done the first two tutorials. But so far I have done examples of 2d input vectors (images).
My ultimate goal is to be able to train a CNN to be able recognise peaks in a spectra(which is 1d vector). Is there any tutorials/example code/suggestion as to how I should start approaching this problem?
There is no actual difference, simply your convolutional kernels will be rectangular instead of square, of size 1xK (as opposed to typical KxK). Besides that there is no much of the difference.
I am working on a project that aims to build a program which automatically gives a relatively accurate detection of pupil region in eye pictures. I am currently using simplecv in Python, given that Python is easier to experiment with. Since I just started, the eye pictures I am working with are fairly standardized. However, the size of iris and pupil as well as the color of iris can vary. And the position of the eye can shift a little among pictures. Here's a picture from wikipedia that is similar to the pictures I am using:
"MyStrangeIris.JPG" by Epicstessie is licensed under CC BY-SA 3.0
I have tried simple thresholding. Since different eyes have different iris colors, a fixed thresholding would not work on all pictures.
In addition, I tried simplecv's build-in sobel and canny edge detection, it's not working especially for eyes with darker iris. I also doubt that sobel or canny alone can solve the problem, given sometimes there are noises on the edge of the pupil (e.g., reflection of eyelash)
I have entry-level knowledge about image processing and machine learning. Right now, I am thinking about three possibilities:
Do a regression on the threshold value base on some variables
Make a specific mask only for edge detection for the pupil
classification on each pixel (this looks like lots of work to build the training set)
Am I on the right track? I would like to reach out to anyone with more experience on this type of problem. Any tips/suggestions are more than welcome. Thanks!
I think that for start you should put aside the machine learning. You have so much more to try in "regular" computer vision.
You need to try and describe a model for your problem. A good way to do this is to sit and think how you as a person detect iris. For example, i can think of:
It is near the center of image.
It is is Brown/green/blue circle, with distinct black center, surrounded by mostly white ellipse.
You have a skin color around the white ellipse.
It can't be too small or too large (depends on your images..)
After you build your model, try to find better ways to find these features. Hard to point on specific stuff, but you can start from: HSV color space, Correlation, Hough transform, Morphological operations..
Only after you feel you have exhausted all conventional tools, start thinking on features extraction and machine learning..
And BTW, because you are not the first person that try to detect iris, you can look at other projects for ideas.
I have written a small matlab code for image (link you have provided), function which i have used is hough transform for circle detection, which has also implemented in opencv, so porting will not create problem, i just want to know that i am on write way or not.
my result and code is as follows:
clc
clear all
close all
im = imresize(imread('irisdet.JPG'),0.5);
gray = rgb2gray(im);
Rmin = 50; Rmax = 100;
[centersDark, radiiDark] = imfindcircles(gray,[Rmin Rmax],'ObjectPolarity','dark');
figure,imshow(im,[])
viscircles(centersDark, radiiDark,'EdgeColor','b');
Input Image:
Result of Algorithm:
Thank You
Not sure about iris classification, but I've done written digit recognition from photos. I would recommend tuning up the contrast and saturation, then use a k-nearest neighbour algorithm to classify your images. Depending on your training set, you can get as high as 90% accuracy.
I think you are on the right track. Do image preprocessing to make classification easier, then train an algorithm of your choice. You would want to treat each image as one input vector though, instead of classifying each pixel!
I think you can try Active Shape Modelling or if you want a really feature rich modelling and do not care about the time it takes execute the algorithm you can try Active appearance modelling. You might want to look into these papers for better understanding:
Active Shape Models: Their Training and Application
Statistical Models of Appearance for Computer Vision - In Depth
We as human, could recognize these two images as same image :
In computer, it will be easy to recognize these two image if they are in the same size, so we have to make Preprocessing stage or step before recognize it, like scaling, but if we look deeply to scaling process, we will know that it's not an efficient way.
Now, could you help me to find some way to convert images into objects that doesn't deal with size or pixel location, to be input for recognition method ?
Thanks advance.
I have several ideas:
Let the image have several color thresholds. This way you get large
areas of the same color. The shapes of those areas can be traced with
curves which are math. If you do this for the larger and the smaller
one and see if the curves match.
Try to define key spots in the area. I don't know for sure how
this works but you can look up face detection algoritms. In such
an algoritm there is a math equation for how a face should look.
If you define enough object in such algorithms you can define
multiple objects in the images to see if the object match on the
same spots.
And you could see if the predator algorithm can accept images
of multiple size. If so your problem is solved.
It looks like you assume that human's brain recognize image in computationally effective way, which is rather not true. this algorithm is so complicated that we did not find it. It also takes a large part of your brain to deal with visual data.
When it comes to software there are some scale(or affine) invariant algorithms. One of such algorithms is LeNet 5 neural network.