I want to find the contours of a binary image of segmented rocks. There are some problems with the findContours function from opencv.
The contour size is around 1000 while the contours from the binary image could be around 30-50.
When I draw ALL the contours, they seem to be a decent representation of the black boundaries from the binary image. But When I draw only one contour of some random index, it shows a small contour.
Images are given below :
Binary Image
Contours of all the index
Contour of a random contour index. The small green contour
I would like to have just the exact number of contours as in the binary image.
Code :
std::vector<std::vector<cv::Point>> contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(input_image, contours,hierarchy, CV_RETR_CCOMP, CV_CHAIN_APPROX_NONE);
for( int i = 0; i < (int)contours.size(); i++)
{
cv::drawContours(input_rgb_image, contours, 512 , cv::Scalar(0,255,0), 1, 8, hierarchy,1);
}
There are two problems with your code. You will get better results if you invert and blur the image. These are my results after applying those two operations before finding the contours:
The OpenCV findContours() function finds dark contours on the light background. If you want to find the white spaces, which are the rocks, you need to invert the binary image first. You can invert a binary image like this invertedImage = 255 - binaryImage. Blurring also helps because it connects pixels that should be connected but aren't because of the low resolution. Blurring is done with the code blurredImage = cv2.blur(img, (2,2)). This is the inverted blurred image:
This is the code that I used:
import cv2
import random
# Read image
gray = 255-cv2.imread('/home/stephen/Desktop/image.png', 0)
gray = cv2.blur(gray, (2,2))
# Find contours in image
contours, _ = cv2.findContours(gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(len(contours))
img = cv2.imread('/home/stephen/Desktop/image.png')
for cnt in contours:
color = random.randint(0,255),random.randint(0,255),random.randint(0,255)
img = cv2.drawContours(img, [cnt], 0, color, cv2.FILLED)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
I would try a couple of things:
bilateral filter instead of blur. It smoothes things in a way similar
to blur but also tries to preserve boundaries, which is good for segmentation. Downsides - it's computationally expensive but you may
find "your" params that play well for free
blur + meanshift segmentation before the watershed. Blur will act just
like expected and meanshift will average and join contours with
similar colors and as such make the number of contours smaller.
Depending on params, meanshift is also expensive. Just play with
it.
More advanced thing is contours analysis afterward. You could unite some of the neighbors based on:
the similarity of the histogram on some of hsv channels;
contours properties, such as roundness. If roundness of two united
neighbors is better than the roundness of any of them then they can be united. Something like this.
Roundness calculating:
float calcRoundness(std::vector<cv::Point> &contour, double area)
{
float p = cv::arcLength(contour, true);
if (p == 0)
return 0;
float k = (4 * M_PI * area) / pow(p, 2);
/* 1 is circle, 0.75 - squared area, etc. */
return k;
}
Related
I'm trying to count the number of erythrocytes on a microscope image. These are the smaller cells. (I've tried first using CNN and sliding window, but it was too slow, so I'm looking for a simplier segmentation)
My approach is:
threshold
find and draw all contours filled so that the cells won't have holes,
make distance transform
iterating over all maxima
masking out a current maximum with a circle having the radius of the maximum and storing the maximum position
My problem is, some cells have a "hole" in the middle - bright area similar by the value to background. If I threshold the image, some of the cell-masks become not a circle but a half circle, with the distance-transform values far below expected value.
I've marked the cells having the "holes" on the mask image.
Hov could I close the hole or the circle? Is there a threshold method or trick?
Below is the part of code responsible for cell extraction:
cv::adaptiveThreshold(_imgIn ,th, 255, ADAPTIVE_THRESH_GAUSSIAN_C, (bgblack ? CV_THRESH_BINARY: CV_THRESH_BINARY_INV), 35, 5 );//| CV_THRESH_OTSU);
Mat kernel1 = Mat::ones(3, 3, CV_8UC1);
for (int i=0; i< 5;i++)
{
dilate(th, th, kernel1);
erode(th, th, kernel1);
}
vector<vector<Point> > contours;
findContours(th, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
mask = 0;
for( unsigned int i = 0; i < contours.size(); i++ )
{
drawContours(mask, contours, i, Scalar(255), CV_FILLED);
}
cv::distanceTransform(mask, dist, CV_DIST_L2, 3);
}
double min, max;
cv::Point pmax;
Mat tmp1 = dist.clone();
while (true)
{
cv::minMaxLoc(tmp1, 0, &max, 0, &pmax);
if ( max < 5 )
break;
cv::circle(_imgIn, pmax, 3 , cv::Scalar(0), CV_FILLED );
cv::circle(tmp1, pmax, max , cv::Scalar(0), CV_FILLED );
}
Closing holes
Closing is an important operator from the field of mathematical morphology. Like its dual operator opening, it can be derived from the fundamental operations of erosion and dilation. Like those operators it is normally applied to binary images, although there are graylevel versions. Closing is similar in some ways to dilation in that it tends to enlarge the boundaries of foreground (bright) regions in an image (and shrink background color holes in such regions), but it is less destructive of the original boundary shape. As with other morphological operators, the exact operation is determined by a structuring element. The effect of the operator is to preserve background regions that have a similar shape to this structuring element, or that can completely contain the structuring element, while eliminating all other regions of background pixels.
In Open CV this looks as follows
import cv2 as cv
import numpy as np
img = cv.imread('j.png',0)
kernel = np.ones((5,5),np.uint8)
erosion = cv.erode(img,kernel,iterations = 1)
closing = cv.morphologyEx(img, cv.MORPH_CLOSE, kernel)
Full documentation here.
I have binary image of edges computed from Phase and magnitude (monogenic signal) , and I want to apply hysteresis thresholding in OpenCv. Unfortunately i couldnt use it as its implemented within Canny edge detection in opencv library. I want to know if there is workaround or simple implementation approach.
I came up with this solution:
Mat threshUpper, threshLower;
threshold(inImage, threshUpper, inThreshold, 128, CV_THRESH_BINARY);
threshold(inImage, threshLower, inThreshold-inHysteresis, 128, CV_THRESH_BINARY);
// Find the contours to get the seed from which starting floodfill
vector<vector<Point>> contoursUpper;
cv::findContours(threshUpper, contoursUpper, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
// Makes brighter the regions that contain a seed
for(auto cnt : contoursUpper){
cv::floodFill(threshLower, cnt[0], 255, 0, 2, 2, CV_FLOODFILL_FIXED_RANGE);
}
//Threshold the image again to make black the not filled regions
threshold(threshLower, outImg, 200, 255, CV_THRESH_BINARY);
Nevertheless, I am still trying to figure out why floodfill takes a lot of time (about 1.5sec) on some input and run smoothly on others (5 millisec)!
EDIT: If you do not care of having a binary image with the regions but you are interested in the contours property you can just have the two thresholded images and perform the following instructions. There are two solutions, one guarantee the hysteresis correctness but is O(n^2) the other approximate the region with its bounding box and run in O(n)
vector<vector<Point>> contoursUpper, contoursLower;
cv::findContours(threshUpper, contoursUpper, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
cv::findContours(threshLower, contoursLower, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
// Correct solution O(n^2)
for(auto cntU : contoursUpper){
for(auto cntL : contoursLower){
if(cv::pointPolygonTest(cntL, cntU[0], false) >= 0){
///#todo: Do something with the cntL region (e.g. compute bounding box etc.)
break; //Already found the connected region the others cannot be connected too
}
}
}
// Approx. solution: O(n)
double minV, maxV;
for(auto cntL : largerContours){
auto minBoundingBox = boundingRect(cntL);
minMaxLoc(narrowThreshold(minBoundingBox), &minV, &maxV);
if(maxV > 1){
///#todo: Do something with the cntL region (e.g. compute bounding box etc.)
}
}
I know that there are a hundred topics about my question in all over the web, but i would like to ask specific for my problem because I tried almost all solutions without any success.
I am trying to count circles in an image (yes i have already tried hough circles but due to light reflections, i think, on my object is not very robust).
Then I tried to create a classifier (no success i think there is no enough features so the detection is not good)
I have also tried HSV conversation and tried to find my object with color (again I had some problems because of the light and the variations of colors)
As you can see on image, there are 8 caps and i would like to be able to count them.
Using all of this methods, i was able to detect the objects on an image (because I was optimizing all the parameters of functions for the specific image) but as soon as I load a new, similar, image the results was disappointing.
Please follow this link to see the Image
Bellow you can find parts of everything i have tried:
1. Hough circles
img = cv2.imread('frame71.jpg',1)
img = cv2.medianBlur(img,5)
cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)
if img == None:
print "There is no image file. Quiting..."
quit()
circles = cv2.HoughCircles(img,cv.CV_HOUGH_GRADIENT,3,50,
param1=55,param2=125,minRadius=25,maxRadius=45)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# draw the outer circle
cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)
# draw the center of the circle
cv2.circle(cimg,(i[0],i[1]),2,(0,0,255),3)
print len(circles[0,:])
cv2.imshow('detected circles',cimg)
cv2.waitKey(0)
cv2.destroyAllWindows()
2. HSV Transform, color detection
def image_process(frame, h_low, s_low, v_low, h_up, s_up, v_up, ksize):
temp = ksize
if(temp%2==1):
ksize = temp
else:
ksize = temp+1
#if(True):
# return frame
#thresh = frame
#try:
#TODO: optimize as much as possiblle this part of code
try:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
lower = np.array([h_low, s_low, v_low],np.uint8)
upper = np.array([h_up,s_up,h_up],np.uint8)
mask = cv2.inRange(hsv, lower, upper)
res = cv2.bitwise_and(hsv,hsv, mask= mask)
thresh = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
#thresh = cv2.threshold(res, 50, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.threshold(thresh, 50, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.medianBlur(thresh,ksize)
except Exception as inst:
print type(inst)
#cv2.imshow('thresh', thresh)
return thresh
3. Cascade classifier
img = cv2.imread('frame405.jpg', 1)
cap_cascade = cv2.CascadeClassifier('haar_30_17_16_stage.xml')
caps = cap_cascade.detectMultiScale(img, 1.3, 5)
#print caps
for (x,y,w,h) in caps:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0),2)
#cv2.rectangle(img, (10,10),(100,100),(0,255,255),4)
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
quit()
About training the classifier I really used a lot of variations of images, samples, negatives and positives, number of stages, w and h but the results was not very accurate.
Finally I would like to know from your experience which is the best method I should follow and I will stick on that in order to optimize my detection. Keep in mind that all images are similiar but NOT identical. There are some differences due to light, movement etc
Than you in advance,
I did some experiment with the sample image. I'm posting my results, and if you find it useful, you can improve it further and optimize. Here are the steps:
downsample the image
perform morphological opening
find Hough circles
cluster the circles by radii (bottle circles should get the same label)
filter the circles by a radius threshold
you can also cluster circles by their center x and y coordinates (I haven't done this)
prepare a mask from the filtered circles and extract the possible bottles region
cluster this region by color
Code is in C++. I'm attaching my results.
Mat im = imread(INPUT_FOLDER_PATH + string("frame71.jpg"));
Mat small;
int kernelSize = 9; // try with different kernel sizes. 5 onwards gives good results
pyrDown(im, small); // downsample the image
Mat morph;
Mat kernel = getStructuringElement(MORPH_ELLIPSE, Size(kernelSize, kernelSize));
morphologyEx(small, morph, MORPH_OPEN, kernel); // open
Mat gray;
cvtColor(morph, gray, CV_BGR2GRAY);
vector<Vec3f> circles;
HoughCircles(gray, circles, CV_HOUGH_GRADIENT, 2, gray.rows/8.0); // find circles
// -------------------------------------------------------
// cluster the circles by radii. similarly you can cluster them by center x and y for further filtering
Mat circ = Mat(circles);
Mat data[3];
split(circ, data);
Mat labels, centers;
kmeans(data[2], 2, labels, TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0), 2, KMEANS_PP_CENTERS, centers);
// -------------------------------------------------------
Mat rgb;
small.copyTo(rgb);
//cvtColor(gray, rgb, CV_GRAY2BGR);
Mat mask = Mat::zeros(Size(gray.cols, gray.rows), CV_8U);
for(size_t i = 0; i < circles.size(); i++)
{
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
float r = centers.at<float>(labels.at<int>(i));
if (r > 30.0f && r < 45.0f) // filter circles by radius (values are based on the sample image)
{
// just for display
circle(rgb, center, 3, Scalar(0,255,0), -1, 8, 0);
circle(rgb, center, radius, Scalar(0,0,255), 3, 8, 0);
// prepare a mask
circle(mask, center, radius, Scalar(255,255,255), -1, 8, 0);
}
}
// use each filtered circle as a mask and extract the region from original downsampled image
Mat rgb2;
small.copyTo(rgb2, mask);
// cluster the masked region by color
Mat rgb32fc3, lbl;
rgb2.convertTo(rgb32fc3, CV_32FC3);
int imsize[] = {rgb32fc3.rows, rgb32fc3.cols};
Mat color = rgb32fc3.reshape(1, rgb32fc3.rows*rgb32fc3.cols);
kmeans(color, 4, lbl, TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0), 2, KMEANS_PP_CENTERS);
Mat lbl2d = lbl.reshape(1, 2, imsize);
Mat lbldisp;
lbl2d.convertTo(lbldisp, CV_8U, 50);
Mat lblColor;
applyColorMap(lbldisp, lblColor, COLORMAP_JET);
Results:
Filtered circles:
Masked:
Segmented:
Hello finally i think I found a way to count caps on bottles.
Read image
Teach (find correct values for HSV up/low limits)
Select desire color (using HSV and mask)
Find contours on the masked image
Find the minCircles for contours
Reject all circles beyond thresholds
I have also order a polarized filter which I think it will reduce glares a lot. I am open to suggestions for further improvement (robustness and speed). Both robustness and speed is crucial for my application.
Thank you.
I need to use blob detection and Structural Analysis and Shape Descriptors (more specifically findContours, drawContours and moments) to detect colored circles in an image. I need to know the pros and cons of each method and which method is better. Can anyone show me the differences between those 2 methods please?
As #scap3y suggested in the comments I'd go for a much simpler approach. What I'm always doing in these cases is something similar to this:
// Convert your image to HSV color space
Mat hsv;
hsv.create(originalImage.size(), CV_8UC3);
cvtColor(originalImage,hsv,CV_RGB2HSV);
// Chose the range in each of hue, saturation and value and threshold the other pixels
Mat thresholded;
uchar loH = 130, hiH = 170;
uchar loS = 40, hiS = 255;
uchar loV = 40, hiV = 255;
inRange(hsv, Scalar(loH, loS, loV), Scalar(hiH, hiS, hiV), thresholded);
// Find contours in the image (additional step could be to
// apply morphologyEx() first)
vector<vector<Point>> contours;
findContours(thresholded,contours,CV_RETR_EXTERNAL,CHAIN_APPROX_SIMPLE);
// Draw your contours as ellipses into the original image
for(i=0;i<(int)valuable_rectangle_indices.size();i++) {
rect=minAreaRect(contours[valuable_rectangle_indices[i]]);
ellipse(originalImage, rect, Scalar(0,0,255)); // draw ellipse
}
The only thing left for you to do now is to figure out in what range your markers are in HSV color space.
I have a problem with filling white holes inside a black coin so that I can have only 0-255 binary images with filled black coins. I have used a Median filter to accomplish it but in that case connection bridge between coins grows and it goes impossible to recognize them after several times of erosion... So I need a simple floodFill like method in opencv
Here is my image with holes:
EDIT: floodfill like function must fill holes in big components without prompting X, Y coordinates as a seed...
EDIT: I tried to use the cvDrawContours function but it doesn't fill contours inside bigger ones.
Here is my code:
CvMemStorage mem = cvCreateMemStorage(0);
CvSeq contours = new CvSeq();
CvSeq ptr = new CvSeq();
int sizeofCvContour = Loader.sizeof(CvContour.class);
cvThreshold(gray, gray, 150, 255, CV_THRESH_BINARY_INV);
int numOfContours = cvFindContours(gray, mem, contours, sizeofCvContour, CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE);
System.out.println("The num of contours: "+numOfContours); //prints 87, ok
Random rand = new Random();
for (ptr = contours; ptr != null; ptr = ptr.h_next()) {
Color randomColor = new Color(rand.nextFloat(), rand.nextFloat(), rand.nextFloat());
CvScalar color = CV_RGB( randomColor.getRed(), randomColor.getGreen(), randomColor.getBlue());
cvDrawContours(gray, ptr, color, color, -1, CV_FILLED, 8);
}
CanvasFrame canvas6 = new CanvasFrame("drawContours");
canvas6.showImage(gray);
Result: (you can see black holes inside each coin)
There are two methods to do this:
1) Contour Filling:
First, invert the image, find contours in the image, fill it with black and invert back.
des = cv2.bitwise_not(gray)
contour,hier = cv2.findContours(des,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contour:
cv2.drawContours(des,[cnt],0,255,-1)
gray = cv2.bitwise_not(des)
Resulting image:
2) Image Opening:
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))
res = cv2.morphologyEx(gray,cv2.MORPH_OPEN,kernel)
The resulting image is as follows:
You can see, there is not much difference in both cases.
NB: gray - grayscale image, All codes are in OpenCV-Python
Reference. OpenCV Morphological Transformations
A simple dilate and erode would close the gaps fairly well, I imagine. I think maybe this is what you're looking for.
A more robust solution would be to do an edge detect on the whole image, and then a hough transform for circles. A quick google shows there are code samples available in various languages for size invariant detection of circles using a hough transform, so hopefully that will give you something to go on.
The benefit of using the hough transform is that the algorithm will actually give you an estimate of the size and location of every circle, so you can rebuild an ideal image based on that model. It should also be very robust to overlap, especially considering the quality of the input image here (i.e. less worry about false positives, so can lower the threshold for results).
You might be looking for the Fillhole transformation, an application of morphological image reconstruction.
This transformation will fill the holes in your coins, even though at the cost of also filling all holes between groups of adjacent coins. The Hough space or opening-based solutions suggested by the other posters will probably give you better high-level recognition results.
In case someone is looking for the cpp implementation -
std::vector<std::vector<cv::Point> > contours_vector;
cv::findContours(input_image, contours_vector, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
cv::Mat contourImage(input_image.size(), CV_8UC1, cv::Scalar(0));
for ( ushort contour_index = 0; contour_index < contours_vector.size(); contour_index++) {
cv::drawContours(contourImage, contours_vector, contour_index, cv::Scalar(255), -1);
}
cv::imshow("con", contourImage);
cv::waitKey(0);
Try using cvFindContours() function. You can use it to find connected components. With the right parameters this function returns a list with the contours of each connected components.
Find the contours which represent a hole. Then use cvDrawContours() to fill up the selected contour by the foreground color thereby closing the holes.
I think if the objects are touched or crowded, there will be some problems using the contours and the math morophology opening.
Instead, the following simple solution is found and tested. It is working very well, and not only for this images, but also for any other images.
here is the steps (optimized) as seen in http://blogs.mathworks.com/steve/2008/08/05/filling-small-holes/
let I: the input image
1. filled_I = floodfill(I). // fill every hole in the image.
2. inverted_I = invert(I)`.
3. holes_I = filled_I AND inverted_I. // finds all holes
4. cc_list = connectedcomponent(holes_I) // list of all connected component in holes_I.
5. holes_I = remove(cc_list,holes_I, smallholes_threshold_size) // remove all holes from holes_I having size > smallholes_threshold_size.
6. out_I = I OR holes_I. // fill only the small holes.
In short, the algorithm is just to find all holes, remove the big ones then write the small ones only on the original image.
I've been looking around the internet to find a proper imfill function (as the one in Matlab) but working in C with OpenCV. After some reaserches, I finally came up with a solution :
IplImage* imfill(IplImage* src)
{
CvScalar white = CV_RGB( 255, 255, 255 );
IplImage* dst = cvCreateImage( cvGetSize(src), 8, 3);
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contour = 0;
cvFindContours(src, storage, &contour, sizeof(CvContour), CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
cvZero( dst );
for( ; contour != 0; contour = contour->h_next )
{
cvDrawContours( dst, contour, white, white, 0, CV_FILLED);
}
IplImage* bin_imgFilled = cvCreateImage(cvGetSize(src), 8, 1);
cvInRangeS(dst, white, white, bin_imgFilled);
return bin_imgFilled;
}
For this: Original Binary Image
Result is: Final Binary Image
The trick is in the parameters setting of the cvDrawContours function:
cvDrawContours( dst, contour, white, white, 0, CV_FILLED);
dst = destination image
contour = pointer to the first contour
white = color used to fill the contour
0 = Maximal level for drawn contours. If 0, only contour is drawn
CV_FILLED = Thickness of lines the contours are drawn with. If it is negative (For example, =CV_FILLED), the contour interiors are drawn.
More info in the openCV documentation.
There is probably a way to get "dst" directly as a binary image but I couldn't find how to use the cvDrawContours function with binary values.