Setting the learning rate in convolutional neural network - machine-learning

I am using google collab to learn some CNN's.
I am using model.compile() to set my loss and optimizer function.
Where do I alter learning rate in the following code?
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

Instead of passing a string you could pass an optimizer to compile method and set your learning rate to the optimizer as shown below:
from keras import optimizers
optm = optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False)
model.compile(optimizer=optm,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

Related

Is it okay to use STATEFUL Recurrent NN (LSTM) for classification

I have a dataset C of 50,000 (binary) samples each of 128 features. The class label is also binary either 1 or -1. For instance, a sample would look like this [1,0,0,0,1,0, .... , 0,1] [-1]. My goal is to classify the samples based on the binary classes( i.e., 1 or -1). I thought to try using Recurrent LSTM to generate a good model for classification. To do so, I have written the following code using Keras library:
tr_C, ts_C, tr_r, ts_r = train_test_split(C, r, train_size=.8)
batch_size = 200
print('>>> Build STATEFUL model...')
model = Sequential()
model.add(LSTM(128, batch_input_shape=(batch_size, C.shape[1], C.shape[2]), return_sequences=False, stateful=True))
model.add(Dense(1, activation='softmax'))
print('>>> Training...')
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(tr_C, tr_r,
batch_size=batch_size, epochs=1, shuffle=True,
validation_data=(ts_C, ts_r))
However, I am getting bad accuracy, not more than 55%. I tried to change the activation function along with the loss function hoping to improve the accuracy but nothing works. Surprisingly, when I use Multilayer Perceptron, I get very good accuracy around 97%. Thus, I start questioning if LSTM can be used for classification or maybe my code here has something missing or it is wrong. Kindly, I want to know if the code has something missing or wrong to improve the accuracy. Any help or suggestion is appreciated.
You cannot use softmax as an output when you have only a single output unit as it will always output you a constant value of 1. You need to either change output activation to sigmoid or set output units number to 2 and loss to categorical_crossentropy. I would advise the first option.

How to avoid overfitting on a simple feed forward network

Using the pima indians diabetes dataset I'm trying to build an accurate model using Keras. I've written the following code:
# Visualize training history
from keras import callbacks
from keras.layers import Dropout
tb = callbacks.TensorBoard(log_dir='/.logs', histogram_freq=10, batch_size=32,
write_graph=True, write_grads=True, write_images=False,
embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)
# Visualize training history
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:, 0:8]
Y = dataset[:, 8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu', name='first_input'))
model.add(Dense(500, activation='tanh', name='first_hidden'))
model.add(Dropout(0.5, name='dropout_1'))
model.add(Dense(8, activation='relu', name='second_hidden'))
model.add(Dense(1, activation='sigmoid', name='output_layer'))
# Compile model
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# Fit the model
history = model.fit(X, Y, validation_split=0.33, epochs=1000, batch_size=10, verbose=0, callbacks=[tb])
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
After several tries, I've added dropout layers in order to avoid overfitting, but with no luck. The following graph shows that the validation loss and training loss gets separate at one point.
What else could I do to optimize this network?
UPDATE:
based on the comments I got I've tweaked the code like so:
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', kernel_regularizer=regularizers.l2(0.01),
activity_regularizer=regularizers.l1(0.01), activation='relu',
name='first_input')) # added regularizers
model.add(Dense(8, activation='relu', name='first_hidden')) # reduced to 8 neurons
model.add(Dropout(0.5, name='dropout_1'))
model.add(Dense(5, activation='relu', name='second_hidden'))
model.add(Dense(1, activation='sigmoid', name='output_layer'))
Here are the graphs for 500 epochs
The first example gave a validation accuracy > 75% and the second one gave an accuracy of < 65% and if you compare the losses for epochs below 100, its less than < 0.5 for the first one and the second one was > 0.6. But how is the second case better?.
The second one to me is a case of under-fitting: the model doesnt have enough capacity to learn. While the first case has a problem of over-fitting because its training was not stopped when overfitting started (early stopping). If the training was stopped at say 100 epoch, it would be a far better model compared between the two.
The goal should be to obtain small prediction error in unseen data and for that you increase the capacity of the network till a point beyond which overfitting starts to happen.
So how to avoid over-fitting in this particular case? Adopt early stopping.
CODE CHANGES: To include early stopping and input scaling.
# input scaling
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Early stopping
early_stop = EarlyStopping(monitor='val_loss', min_delta=0, patience=3, verbose=1, mode='auto')
# create model - almost the same code
model = Sequential()
model.add(Dense(12, input_dim=8, activation='relu', name='first_input'))
model.add(Dense(500, activation='relu', name='first_hidden'))
model.add(Dropout(0.5, name='dropout_1'))
model.add(Dense(8, activation='relu', name='second_hidden'))
model.add(Dense(1, activation='sigmoid', name='output_layer')))
history = model.fit(X, Y, validation_split=0.33, epochs=1000, batch_size=10, verbose=0, callbacks=[tb, early_stop])
The Accuracy and loss graphs:
First, try adding some regularization (https://keras.io/regularizers/) like with this code:
model.add(Dense(12, input_dim=12,
kernel_regularizer=regularizers.l2(0.01),
activity_regularizer=regularizers.l1(0.01)))
Also, make sure to decrease your network size i.e. you don't need a hidden layer of 500 neurons - try just taking that out to decrease the representation power and maybe even another layer if it's still overfitting. Also, only use relu activation. Maybe also try increasing your dropout rate to something like 0.75 (although it's already high). You probably also don't need to run it for so many epochs - it will just begin to overfit after long enough.
For a dataset like the Diabetes one you can use a much simpler network. Try to reduce the neurons in your second layer. (Is there a specific reason why you chose tanh as the activation there?).
In addition you simply can add an EarlyStopping callback to your training: https://keras.io/callbacks/

Why is keras way slower than sklearn?

I'm dealing with a simple logistic regression problem. Each sample contains 7423 features. Totally 4000 training samples and 1000 testing samples. Sklearn takes 0.01s to train the model and achieves 97% accuracy, but Keras (TensorFlow backend) takes 10s to achieve same accuracy after 50 epoches (even one epoch is 20x slower than sklearn). Anyone can shed light on this huge gap?
Samples:
X_train: matrix of 4000*7423, 0.0 <= value <= 1.0
y_train: matrix of 4000*1, value = 0.0 or 1.0
X_test: matrix of 1000*7423, 0.0 <= value <= 1.0
y_test: matrix of 1000*1, value = 0.0 or 1.0
Sklearn code:
from sklearn.linear_model.logistic import LogisticRegression
from sklearn.metrics import accuracy_score
classifier = LogisticRegression()
**# Finished in 0.01s**
classifier.fit(X_train, y_train)
predictions = classifier.predict(X_test)
print('test accuracy = %.2f' % accuracy_score(predictions, y_test))
*[output]: test accuracy = 0.97*
Keras code:
# Using TensorFlow as backend
from keras.models import Sequential
from keras.layers import Dense, Activation
model = Sequential()
model.add(Dense(1, input_dim=X_train.shape[1], activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
**# Finished in 10s**
model.fit(X_train, y_train, batch_size=64, nb_epoch=50, verbose=0)
result = model.evaluate(X_test, y_test, verbose=0)
print('test accuracy = %.2f' % result[1])
*[output]: test accuracy = 0.97*
It might be the optimizer or the loss. You use a non linearity. You also use probably a different batch size under the hood in sklearn.
But the way I see it is that you have a specific task, one of the tool is tailored and made to resolve it, the other is a more complex structure that can resolve it but is not optimized to do so and probably does a lot of things that are not needed for this problem which slows everything down.

Why is binary_crossentropy more accurate than categorical_crossentropy for multiclass classification in Keras?

I'm learning how to create convolutional neural networks using Keras. I'm trying to get a high accuracy for the MNIST dataset.
Apparently categorical_crossentropy is for more than 2 classes and binary_crossentropy is for 2 classes. Since there are 10 digits, I should be using categorical_crossentropy. However, after training and testing dozens of models, binary_crossentropy consistently outperforms categorical_crossentropy significantly.
On Kaggle, I got 99+% accuracy using binary_crossentropy and 10 epochs. Meanwhile, I can't get above 97% using categorical_crossentropy, even using 30 epochs (which isn't much, but I don't have a GPU, so training takes forever).
Here's what my model looks like now:
model = Sequential()
model.add(Convolution2D(100, 5, 5, border_mode='valid', input_shape=(28, 28, 1), init='glorot_uniform', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(100, 3, 3, init='glorot_uniform', activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(100, init='glorot_uniform', activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(100, init='glorot_uniform', activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(10, init='glorot_uniform', activation='softmax'))
model.compile(loss='binary_crossentropy', optimizer='adamax', metrics=['accuracy'])
Short answer: it is not.
To see that, simply try to calculate the accuracy "by hand", and you will see that it is different from the one reported by Keras with the model.evaluate method:
# Keras reported accuracy:
score = model.evaluate(x_test, y_test, verbose=0)
score[1]
# 0.99794011611938471
# Actual accuracy calculated manually:
import numpy as np
y_pred = model.predict(x_test)
acc = sum([np.argmax(y_test[i])==np.argmax(y_pred[i]) for i in range(10000)])/10000
acc
# 0.98999999999999999
The reason it seems to be so is a rather subtle issue at how Keras actually guesses which accuracy to use, depending on the loss function you have selected, when you include simply metrics=['accuracy'] in your model compilation.
If you check the source code, Keras does not define a single accuracy metric, but several different ones, among them binary_accuracy and categorical_accuracy. What happens under the hood is that, since you have selected binary cross entropy as your loss function and have not specified a particular accuracy metric, Keras (wrongly...) infers that you are interested in the binary_accuracy, and this is what it returns.
To avoid that, i.e. to use indeed binary cross entropy as your loss function (nothing wrong with this, in principle) while still getting the categorical accuracy required by the problem at hand (i.e. MNIST classification), you should ask explicitly for categorical_accuracy in the model compilation as follows:
from keras.metrics import categorical_accuracy
model.compile(loss='binary_crossentropy', optimizer='adamax', metrics=[categorical_accuracy])
And after training, scoring, and predicting the test set as I show above, the two metrics now are the same, as they should be:
sum([np.argmax(y_test[i])==np.argmax(y_pred[i]) for i in range(10000)])/10000 == score[1]
# True
(HT to this great answer to a similar problem, which helped me understand the issue...)
UPDATE: After my post, I discovered that this issue had already been identified in this answer.
First of all, binary_crossentropy is not when there are two classes.
The "binary" name is because it is adapted for binary output, and each number of the softmax is aimed at being 0 or 1.
Here, it checks for each number of the output.
It doesn't explain your result, since categorical_entropy exploits the fact that it is a classification problem.
Are you sure that when you read your data there is one and only one class per sample? It's the only one explanation I can give.

Why pretraining for DNN is not specified in keras?

The problem is more about the training algorithm for DNN rather than the software keras.
As far as I know, deep neural network works due to the improvement in training algorithm. From the 1980s, the BP algorithm has been used to train neural network but will result in over-fitting problem when the network is deep. About 10 years ago, Hinton improved the algorithm by first pre-traning the network using unlabeled data and then using BP algorithm. The pre-traning plays an important role to avoid over-fitting.
However, as I begin to try Keras, the example (in the below) of mnist DNN using SGD algorithm without any mention about the pre-training process leads to a very high prediction accuracy. So, I begin to wonder where has the pre-training gone? Wheter I misundertood the deep learning training algorithm (I think the classical BP is almost the same as SGD)? Or a new traning technique has replaced the pre-traning process?
Very grateful for your help!
'''Trains a simple deep NN on the MNIST dataset.
Gets to 98.40% test accuracy after 20 epochs
(there is *a lot* of margin for parameter tuning).
2 seconds per epoch on a K520 GPU.
'''
from __future__ import print_function
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD, Adam, RMSprop
from keras.utils import np_utils
batch_size = 128
nb_classes = 10
nb_epoch = 20
# the data, shuffled and split between train and test sets
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
model = Sequential()
model.add(Dense(512, input_shape=(784,)))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
history = model.fit(X_train, Y_train,
batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, validation_data=(X_test, Y_test))
score = model.evaluate(X_test, Y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
You are wrong.
Past vs. Today
The difference between Neural Networks in the past and the ones today is not about the training algorithm. Every DNN is trained with Backpropagation based on some SGD-based algorithm, exactly like in the past. (There are some new algorithms trying to reduce parameter-tuning with adaptive learning-rates like Adam, RMSprop and co.; but plain SGD is still the most common algorithm and was used for AlphaGo for example)
The difference is just the size = number of layers (deepness; which is possible due to GPU-based evaluation) and the choosings of activation-functions. ReLU is just working better than the classic Sigmoid or Tanh activations (regarding speed and stability).
Pre-training
I also think, that pre-training was very popular 5-10 years ago but nobody is doing that today (if you got enough data)!
Let me quote from here:
It's true that unsupervised pre-training was initially what made it possible to train deeper networks, but the last few years the pre-training approach has been largely obsoleted.
Nowadays, deep neural networks are a lot more similar to their 80's cousins. Instead of pre-training, the difference is now in the activation functions and regularisation methods used (and sometimes in the optimisation algorithm, although much more rarely).
I would say that the "pre-training era", which started around 2006, ended in the early '10s when people started using rectified linear units (ReLUs), and later dropout, and discovered that pre-training was no longer beneficial for this type of networks.
I can recommend these slides as introduction to modern Deep Learning (as starting point).
Pretraining Is actually gaining again a lot of traction in NLP community, see OpenAI's GPT: the idea is that pretraining acts as an unsupervised initialization step before fine-tuning the model with the supervised data. This is because unlabeled data is much more abundant that labeled counterpart and it can be exploited to derive sensible weights inside the model that express the hidden links inside the dataset structures.
Hope that the explanation was not too goofy :)

Resources