In Delphi, we need to know the number of CPUs for parallelization. Until now, we have used the GetNativeSystemInfo() function, which has worked fine, also with servers with hyperthreading.
But now, we have a server (Intel Xeon Gold 6230) with 40 physical processors and 80 logical processors with hyperthreading, and GetNativeSystemInfo() only shows 40 CPUs.
We made a small test program that uses 3 calls:
GetNativeSystemInfo()
GetLogicalProcessorInformation() (code from How to detect number of logical and physical processors efficiently?)
And looking into the Registry for number of CPUs:
Computer\HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System\CentralProcessor
For all of our servers, these 3 calls give the same number of CPUs:
But for the Intel Xeon, only the Registry gives us the 80 CPUs:
Does anybody know why it is not working for the Intel server, or know a way to be sure to get the max number of CPUs?
In GetLogicalProcessorInformation documentation I found this part:
On systems with more than 64 logical processors, the
GetLogicalProcessorInformation function retrieves logical processor
information about processors in the processor group to which the
calling thread is currently assigned. Use the
GetLogicalProcessorInformationEx function to retrieve information
about processors in all processor groups on the system.
So try using GetLogicalProcessorInformationEx.
To query logical processor count greater than 64, you have to use the newer GetLogicalProcessorInformationEx API, which the NumCPULib4Pascal library wraps in an easy-to-use manner.
Unfortunately, I can't paste the full code here because it won't fit the word limit of StackOverflow.
Sample usage below:
uses
NumCPULib;
var
lcc, pcc: Int32;
begin
// count logical cpus
lcc := TNumCPULib.GetLogicalCPUCount();
// count physical cpus
pcc := TNumCPULib.GetPhysicalCPUCount();
end;
Related
I am trying to use some of the uncore hardware counters, such as: skx_unc_imc0-5::UNC_M_WPQ_INSERTS. It's supposed to count the number of allocations into the Write Pending Queue. The machine has 2 Intel Xeon Gold 5218 CPUs with cascade lake architecture, with 2 memory controllers per CPU. linux version is 5.4.0-3-amd64. I have the following simple loop and I am reading this counter for it. Array elements are 64 byte in size, equal to cache line.
for(int i=0; i < 1000000; i++){
array[i].value=2;
}
For this loop, when I map memory to DRAM NUMA node, the counter gives around 150,000 as a result, which maybe makes sense: There are 6 channels in total for 2 memory controllers in front of this NUMA node, which use DRAM DIMMs in interleaving mode. Then for each channel there is one separate WPQ I believe, so skx_unc_imc0 gets 1/6 from the entire stores. There are skx_unc_imc0-5 counters that I got with papi_native_avail, supposedly each for different channels.
The unexpected result is when instead of mapping to DRAM NUMA node, I map the program to Non-Volatile Memory, which is presented as a separate NUMA node to the same socket. There are 6 NVM DIMMs per-socket, that create one Interleaved Region. So when writing to NVM, there should be similarly 6 different channels used and in front of each, there is same one WPQ, that should get again 1/6 write inserts.
But UNC_M_WPQ_INSERTS returns only around up 1000 as a result on NV memory. I don't understand why; I expected it to give similarly around 150,000 writes in WPQ.
Am I interpreting/understanding something wrong? Or is there two different WPQs per channel depending wether write goes to DRAM or NVM? Or what else could be the explanation?
It turns out that UNC_M_WPQ_INSERTS counts the number of allocations into the Write Pending Queue, only for writes to DRAM.
Intel has added corresponding hardware counter for Persistent Memory: UNC_M_PMM_WPQ_INSERTS which counts write requests allocated in the PMM Write Pending Queue for Intel® Optane™ DC persistent memory.
However there is no such native event showing up in papi_native_avail which means it can't be monitored with PAPI yet. In linux version 5.4, some of the PMM counters can be directly found in perf list uncore such as unc_m_pmm_bandwidth.write - Intel Optane DC persistent memory bandwidth write (MB/sec), derived from unc_m_pmm_wpq_inserts, unit: uncore_imc. This implies that even though UNC_M_PMM_WPQ_INSERTS is not directly listed in perf list as an event, it should exist on the machine.
As described here the EventCode for this counter is: 0xE7, therefore it can be used with perf as a raw hardware event descriptor as following: perf stat -e uncore_imc/event=0xe7/. However, it seems that it does not support event modifiers to specify user-space counting with perf. Then after pinning the thread in the same socket as the NVM NUMA node, for the program that basically only does the loop described in the question, the result of perf kind of makes sense:
Performance counter stats for 'system wide': 1,035,380 uncore_imc/event=0xe7/
So far this seems to be the the best guess.
I worked with megafunctions to generate 32bit data memory in the fpga.but the output was addressed 32bit (4 bytes) at time , how to do 1 byte addressing ?
i have Altera Cyclone IV ep4ce6e22c8.
I'm designing a 32bit CPU in fpga ,
Nowadays every CPU address bus works in bytes. Thus to access your 32-bit wide memory you should NOT connect the LS 2 address bits. You can use the A[1:0] address bits to select a byte (or half word using A[1] only) from the memory when your read.
You still will need four byte write enable signals. This allows you to write word, half-words or bytes.
Have a look at existing CPU buses or existing connection standards like AHB or AXI.
Post edit:
but reading address 0001 , i get 0x05060708 but the desired value is 0x02030405.
What you are trying to do is read a word from a non-aligned address. There is no existing 32-bit wide memory that supports that. I suggest you have a look at how a 32-bit wide memory works.
The old Motorola 68020 architecture supported that. It requires a special memory controller which first reads the data from address 0 and then from address 4 and re-combines the data into a new 32-bit word.
With the cost of memory dropping and reducing CPU cycles becoming more important, no modern CPU supports that. They throw an exception: non-aligned memory access.
You have several choices:
Build a special memory controller which supports unaligned accesses.
Adjust your expectations.
I would go for the latter. In general it is based on the wrong idea how a memory works. As consolidation: You are not the first person on this website who thinks that is how you read words from memory.
I have a 64 bit kernel and i run 32 bit processes in userland.In the user process code ,if i declare a 64 bit variable ,how will it be referred.Will it incur 2 memory reads.?
basically the scenario is:
I need to use a 64 bit mask in my user process.
Approach 1 :
-> Use a u64bits variable.
Approach
-> Use a array of 2 32 bit variables.
First off: the kernel has no bearing on the answer to this question.
Second, I assume this is x86 you're talking about. Where possible, the compiler will place 64-bit values across 2 32-bit registers. For example, if you return a uint64_t from a function, the low 32 bits will be stored in the eax register, and the high bits will be in edx.
The compiler will generally do the right thing for performance and correctness: using an array will likely just confuse it and lead to worse results.
By the way, x86-64 CPUs will normally perform reads of 2 adjacent 32-bit words at the same speed as a single 64-bit read. The advantages of 64-bit mode are that arithmetic can be done directly on 64-bit values (1 64x64 multiplication instruction vs 3-4 32x32 instructions), there is much more space available in registers (16 registers instead of 8, registers are twice as wide), and of course the larger possible virtual address space.
I'm looking into reading single bits from memory (RAM, harddisk). My understanding was, one can not read less than a byte.
However I read someone telling it can be done with assembly.
I wan't the bandwidth usage to be as low as possible and the to be retrieved data is not sequential, so I can not read a byte and convert it to 8 bits.
I don't think the CPU will read less than the size of a cache line from RAM (64 bytes on recent Intel chips). From disk, the minimum is typically 4 kiB.
Reading a single bit at a time is neither possible nor necessary, since the data bus is much wider than that.
You cannot read less than a byte from any PC or hard disk that I know of. Even if you could, it would be extremely inefficient.
Some machines do memory mapped port io that can read/write less than a byte to the port, but it still shows up when you get it as at least a byte.
Use the bitwise operators to pick off specific bits as in:
char someByte = 0x3D; // In binary, 111101
bool flag = someByte & 1; // Get the first bit, 1
flag = someByte & 2; // Get the second bit, 0
// And so on. The number after the & operator is a power of 2 if you want to isolate one bit.
// You can also pick off several bits like so:
int value = someByte & 3; // Assume the lower 2 bits are interesting for some reason
It used to be, say 386/486 days, where a memory was a bit wide, 1 meg by 1 bit, but you will have 8 or some multiple number of chips, one for each bit lane on the bus, and you could only read in widths of the bus. today the memories are a byte wide and you can only read in units of 32 or 64 or multiples of those. Even when you read a byte, most designs fill in the whole byte. it adds unnecessarily complication/cost, to isolate the bus all the way to the memory, a byte read looks to most of the system as a 32 or 64 bit read, as it approaches the edge of the processor (sometimes physical pins, sometimes the edge of the core inside the chip) is when the individual byte lane is separated out and the other bits are discarded. Having the cache on changes the smallest divisible read size from the memory, you will see a burst or block of reads.
it is possible to design a memory system that is 8 bits wide and read 8 bits at a time, but why would you? unless it is an 8 bit processor which you probably couldnt take advantage of a 8bit by 2 gig memory. dram is pretty slow anyway, something like 133 mhz (even your 1600mhz memory is only short burst as you read from slow parts, memory has not gotten faster in over 10 years).
Hard disks are similar but different, I think sectors are the smallest divisible unit, you have to read or write in those units. so when reading you have a memory cycle on the processor, no different that going to a memory, and depending on the controller either before you do the read or as a result, a sector is read of the disk, into a buffer, not unlike a cache line read, then your memory cycle to the buffer in the disk controller either causes a bus width read and the processor divides it up or if the bus adds complexity to isolate byte lanes then you isolate a byte, but nobody isolates bit lanes. (I say the word nobody and someone will come back with an exception...)
most of this is well documented, not hard to find. For arm platforms look for the amba and/or axi specifications, freely downloaded. the number of bridges, pcie controllers, disk controller documents are all available for PCs and other platforms. it still boils down to an address and data bus or one goesouta and one goesinta data bus and some control signals that indicate the access type. some busses have byte lane enables, which is generally for a write not a read. If I want to write only a byte to a dram in a modern 64 bit system, I DO have to tell everyone almost all the way out to the dram what I want to write. To write a byte on a memory module which must be accessed 64 bits at a time, at a minimum a 64 bit read happens into a temporary place either the cache or the memory controller, then the byte to be written modifies the specific byte within the 64 bit word, then that 64 bit quantity, eventually, is written back to the memory module itself. You can do this using a combination of the address bits and a few control signals or you can just put 8 byte lane enables and the lower address bits can be ignored. Hard disk, same deal, have to read a sector, modify one byte, then eventually write the whole sector at a time. with flash and eeprom, you can only write zeros (from the programmers perspective), you erase to ones (from the programmers perspective, is actually a zero in the logic, there is an inversion) and a write has to be a sector at a time, sectors can be 64 bytes, 128 bytes, 256 bytes typically.
Admittedly I don't get it. Say you have a memory with a memory word of length of 1 byte. Why can't you access a 4 byte long variable in a single memory access on an unaligned address(i.e. not divisible by 4), as it's the case with aligned addresses?
The memory subsystem on a modern processor is restricted to accessing memory at the granularity and alignment of its word size; this is the case for a number of reasons.
Speed
Modern processors have multiple levels of cache memory that data must be pulled through; supporting single-byte reads would make the memory subsystem throughput tightly bound to the execution unit throughput (aka cpu-bound); this is all reminiscent of how PIO mode was surpassed by DMA for many of the same reasons in hard drives.
The CPU always reads at its word size (4 bytes on a 32-bit processor), so when you do an unaligned address access — on a processor that supports it — the processor is going to read multiple words. The CPU will read each word of memory that your requested address straddles. This causes an amplification of up to 2X the number of memory transactions required to access the requested data.
Because of this, it can very easily be slower to read two bytes than four. For example, say you have a struct in memory that looks like this:
struct mystruct {
char c; // one byte
int i; // four bytes
short s; // two bytes
}
On a 32-bit processor it would most likely be aligned like shown here:
The processor can read each of these members in one transaction.
Say you had a packed version of the struct, maybe from the network where it was packed for transmission efficiency; it might look something like this:
Reading the first byte is going to be the same.
When you ask the processor to give you 16 bits from 0x0005 it will have to read a word from 0x0004 and shift left 1 byte to place it in a 16-bit register; some extra work, but most can handle that in one cycle.
When you ask for 32 bits from 0x0001 you'll get a 2X amplification. The processor will read from 0x0000 into the result register and shift left 1 byte, then read again from 0x0004 into a temporary register, shift right 3 bytes, then OR it with the result register.
Range
For any given address space, if the architecture can assume that the 2 LSBs are always 0 (e.g., 32-bit machines) then it can access 4 times more memory (the 2 saved bits can represent 4 distinct states), or the same amount of memory with 2 bits for something like flags. Taking the 2 LSBs off of an address would give you a 4-byte alignment; also referred to as a stride of 4 bytes. Each time an address is incremented it is effectively incrementing bit 2, not bit 0, i.e., the last 2 bits will always continue to be 00.
This can even affect the physical design of the system. If the address bus needs 2 fewer bits, there can be 2 fewer pins on the CPU, and 2 fewer traces on the circuit board.
Atomicity
The CPU can operate on an aligned word of memory atomically, meaning that no other instruction can interrupt that operation. This is critical to the correct operation of many lock-free data structures and other concurrency paradigms.
Conclusion
The memory system of a processor is quite a bit more complex and involved than described here; a discussion on how an x86 processor actually addresses memory can help (many processors work similarly).
There are many more benefits to adhering to memory alignment that you can read at this IBM article.
A computer's primary use is to transform data. Modern memory architectures and technologies have been optimized over decades to facilitate getting more data, in, out, and between more and faster execution units–in a highly reliable way.
Bonus: Caches
Another alignment-for-performance that I alluded to previously is alignment on cache lines which are (for example, on some CPUs) 64B.
For more info on how much performance can be gained by leveraging caches, take a look at Gallery of Processor Cache Effects; from this question on cache-line sizes
Understanding of cache lines can be important for certain types of program optimizations. For example, the alignment of data may determine whether an operation touches one or two cache lines. As we saw in the example above, this can easily mean that in the misaligned case, the operation will be twice slower.
It's a limitation of many underlying processors. It can usually be worked around by doing 4 inefficient single byte fetches rather than one efficient word fetch, but many language specifiers decided it would be easier just to outlaw them and force everything to be aligned.
There is much more information in this link that the OP discovered.
you can with some processors (the nehalem can do this), but previously all memory access was aligned on a 64-bit (or 32-bit) line, because the bus is 64 bits wide, you had to fetch 64 bit at a time, and it was significantly easier to fetch these in aligned 'chunks' of 64 bits.
So, if you wanted to get a single byte, you fetched the 64-bit chunk and then masked off the bits you didn't want. Easy and fast if your byte was at the right end, but if it was in the middle of that 64-bit chunk, you'd have to mask off the unwanted bits and then shift the data over to the right place. Worse, if you wanted a 2 byte variable, but that was split across 2 chunks, then that required double the required memory accesses.
So, as everyone thinks memory is cheap, they just made the compiler align the data on the processor's chunk sizes so your code runs faster and more efficiently at the cost of wasted memory.
Fundamentally, the reason is because the memory bus has some specific length that is much, much smaller than the memory size.
So, the CPU reads out of the on-chip L1 cache, which is often 32KB these days. But the memory bus that connects the L1 cache to the CPU will have the vastly smaller width of the cache line size. This will be on the order of 128 bits.
So:
262,144 bits - size of memory
128 bits - size of bus
Misaligned accesses will occasionally overlap two cache lines, and this will require an entirely new cache read in order to obtain the data. It might even miss all the way out to the DRAM.
Furthermore, some part of the CPU will have to stand on its head to put together a single object out of these two different cache lines which each have a piece of the data. On one line, it will be in the very high order bits, in the other, the very low order bits.
There will be dedicated hardware fully integrated into the pipeline that handles moving aligned objects onto the necessary bits of the CPU data bus, but such hardware may be lacking for misaligned objects, because it probably makes more sense to use those transistors for speeding up correctly optimized programs.
In any case, the second memory read that is sometimes necessary would slow down the pipeline no matter how much special-purpose hardware was (hypothetically and foolishly) dedicated to patching up misaligned memory operations.
#joshperry has given an excellent answer to this question. In addition to his answer, I have some numbers that show graphically the effects which were described, especially the 2X amplification. Here's a link to a Google spreadsheet showing what the effect of different word alignments look like.
In addition here's a link to a Github gist with the code for the test.
The test code is adapted from the article written by Jonathan Rentzsch which #joshperry referenced. The tests were run on a Macbook Pro with a quad-core 2.8 GHz Intel Core i7 64-bit processor and 16GB of RAM.
If you have a 32bit data bus, the address bus address lines connected to the memory will start from A2, so only 32bit aligned addresses can be accessed in a single bus cycle.
So if a word spans an address alignment boundary - i.e. A0 for 16/32 bit data or A1 for 32 bit data are not zero, two bus cycles are required to obtain the data.
Some architectures/instruction sets do not support unaligned access and will generate an exception on such attempts, so compiler generated unaligned access code requires not just additional bus cycles, but additional instructions, making it even less efficient.
If a system with byte-addressable memory has a 32-bit-wide memory bus, that means there are effectively four byte-wide memory systems which are all wired to read or write the same address. An aligned 32-bit read will require information stored in the same address in all four memory systems, so all systems can supply data simultaneously. An unaligned 32-bit read would require some memory systems to return data from one address, and some to return data from the next higher address. Although there are some memory systems that are optimized to be able to fulfill such requests (in addition to their address, they effectively have a "plus one" signal which causes them to use an address one higher than specified) such a feature adds considerable cost and complexity to a memory system; most commodity memory systems simply cannot return portions of different 32-bit words at the same time.
On PowerPC you can load an integer from an odd address with no problems.
Sparc and I86 and (I think) Itatnium raise hardware exceptions when you try this.
One 32 bit load vs four 8 bit loads isnt going to make a lot of difference on most modern processors. Whether the data is already in cache or not will have a far greater effect.