What would be a good way to handle "snoozed" functions? - ios

I've tried a few solutions so far but I'm not sure if there is a "right" way. I'm working on a todo list with a snooze function. Each task has a "wake from snooze" time when I need to run a function to move it into a different list.
I've tried looping through each task and moving it when viewWillAppear and/or viewDidAppear runs. This generally works but seems to misfire occasionally and wouldn't happen while the app is running and the user isn't switching views.
I've tried using the Timer() function to move items at the actual specific times which only works while the app is running.
I've tried moving the items in the background using performFetchWithCompletionHandler and checking every hour.
Anything else I should try to make this run more smoothly? Is it a combination of all of these? If that's the case, how would I make sure that I'm not trying to move items twice at the same time?

In general the question seems to be how to ensure that something happens at a certain date-time.
Work out what the target date-time is and write it down somewhere stable (a file, user defaults, whatever) along with what has to happen then.
Watch the clock. A timer that fires every minute will probably be good enough; just look at the clock and see if that time has passed. If it has, do the thing and erase the info saying that this thing needs to happen at this date-time.
If the app goes into the background, stop the timer.
When the app comes to the foreground again, check your date-time.
If the time has passed, do the thing and erase the info saying that this thing needs to happen at this date-time.
If not, start the timer again and keep watching the clock.

Related

Where to put code that gets checked frequently?

I have some code that needs to get called frequently, such as check what day it is, if it's the next day then move the day strings in the tableView.
Now I thought that the viewDidLoad would get called all the time and so it would be 'fine' to put it in there. However, I've left the simulator overnight, and I've pressed the home button and clicked again, changed VCs etc. and viewDidLoad hasn't been hit.
What are my options for doing sporadic checks such as, is it a new day? As x happened etc.
In this specific case, you can subscribe to NSCalendarDayChangedNotification to be notified when the date changes and respond accordingly in your view controller. In general, didBecomeActive or viewDidAppear would likely work.
What are my options for doing sporadic checks such as, is it a new day
It depends what the meaning of "is" is! In particular, "is" when? You say "sporadic", but that's just fluff. When do you need to know this? To what stimulus do you want to respond? When the user opens your app? Then put it in applicationDidBecomeActive. Every day at noon? Then run an NSTimer. Really, the problem here is that you don't seem to know, yourself, just when you need to perform these checks.
Whilst in your app, its quite easy to continually check for something. You simply create a background thread. However, what you describe is a thread that persists from outside the app's lifecycle.
Have a read on this documentation provided by Apple itself. You have to have good excuse to put a background thread. The scope of such thread is limited to only certain scenarios such as downloading background stuff, playing sounds etc.
For your scenario, I'd look at applicationDidBecomeActive(_:) found in your Application Delegate. There you can mimic such continual check. Beware however, don't put heavy word load on start up or your app might be killed automatically if it fails to become active in reasonable amount of time.

iOS touchesMoved delay between first and second calls

I have some problems in my iOS app.
I have checked timestamps in the touchesMoved with clock() function and use difference between current and previous values. Difference between 1st and 2nd events is greater than others.
Have you any ideas?
iOS is not a hard-realtime OS. There is generally no expectation that touch events will be delivered with regular frequency/uniform periods. You should not structure your app to depend on that. Events are delivered via the main thread, which could be delayed by other processing (drawing, etc.)
EDIT: If you're seeing huge differences in periods between the 1st and 2nd touches (relative to the periods between subsequent touch events), the first step would be to run the app in Instruments' Profiler template to see if some work that you're doing on the main thread in response to the first touch is causing the delay. If the delay is of your own doing, then fixing that is the first order of business.
Beyond that, you could try using various signal processing approaches to re-sample your data into uniform periodic data, but the problem is that any of those algorithms won't be able to deliver the first re-quantized point until at LEAST the 2nd (and more likely the 3rd or even later) event comes in, so if the principal problem is "The 2nd event doesn't come as soon as you'd like", then this won't help you.
Another good test: Try making an empty single-view sample app that does nothing but log the events as they come in -- if you see the same "odd" delay between 1st and 2nd touches in that trivial sample app, then that's just "how it is," and you can stop wasting time trying to change the OS behavior and move on to some different approach/solution.

On iOS, can you begin work on the background thread before applicationDidEnterBackground is called?

I'm updating some content in my app and I want that to finish up when the user switches out of the app. It seems like I have to stop my currently-running update and start another one in the applicationDidEnterBackground method. It would be much more convenient if I could mark some work as something I want to run in the background before that method is called.
Here's the scenario:
I'm trying to update content and start running a SQL update that takes a bit of time. (More than the five seconds you have to return from applicationDidEnterBackground.)
The user leaves the app. The current update is suspended, but I really want it to finish.
I can start a new update which picks up where the other left off, but if the user switches back into the app I have SQL-level concurrency issues.
Is the only option to break down the SQL queries to smaller batches so I can switch over cleanly in the applicationDidEnterBackground callback? It almost doubles the execution time. (I'm not worried about the OS killing my background task, resume is handled fine.)
Ideally I'd be able to have the existing work continue seamlessly in the background (at the pleasure of the OS), is that possible? Are there better options?
(I've read the Programming Guide's section on executing background tasks.)
You can continue to run your current threads. You don't have to stop any of them and start new one.
The only thing which you need to do, if to use beginBackgroundTaskWithExpirationHandler (as proxi mentioned) when you entering background and use endBackgroundTask when you are done. This method gives your application up to 10 minutes of execution. UI of your application won't be accessible (since a user switched to another app), but all threads of your app will continue to run. System will pause all threads when your will do endBackgroundTask or 10 minutes will expire.
I would organize it like this
Have you processing threads running
In applicationDidEnterBackground call beginBackgroundTaskWithExpirationHandler.
Save UIBackgroundTaskIdentifier somewhere accessbile.
At the end of your processing thread, check whether UIBackgroundTaskIdentifier isn't 0 and if it's not, call endBackgroundTask. Set UIBackgroundTaskIdentifier to zero.
If I understand right, you just have to wrap your long-running operation into beginBackgroundTaskWithExpirationHandler block. See the method's documentation for details on how to use it.

how to use GANTracker for long running iOS apps, including background audio

My App is typically run overnight as a baby monitor, either as foreground app, or with background audio running.
Goals:
Track total app startups ie. active user count.
Track total usage time in foreground vs background and total session time.
Track various page-views if they navigate the settings screens.
As recommended, I start the tracker in didFinishLaunchingWithOptions, and track my first ViewController as my first 'page-view'. My App might stay on this page then for the next 8 hours...
A couple of issues then appear:
When do I call stopTracker and what does it do? I'm hoping that it terminates the tracking session. But since google kindly hid their code in a static lib, I have no idea what's going on under the covers, and the .h doesn't say much. First instinct is to put stopTracker in applicationWillResignActive however, if the user decides to enable background audio my app is still running...
Next I read that a session can timeout after 30mins with no new pageviews, or at midnight. I could set a repeating timer to send the same page-view every 20mins, that should keep my session alive, at least until midnight, but then my page views are going to be much larger? unless it's smart enough to know I'm on the same page with every call. google analytics blog
[Update: each call seems to be counted as a new pageview, and numbers are thus skewed, so still an issue how to handle this]
If my timer above runs past midnight and the session has expired, I'm going to end up with a new session and double the actual active user count?
If I do call stopTracker in applicationWillResignActive, will the next call to track a page-view restart the tracker? or do I need to call startTrackerWithAccountID again?
If instead I start the tracker in applicationDidBecomeActive, I lose the session that might have been running in the background.
[update: this seems to be the best approach so far, but testing is very slow due to time lag on analytics reports, I will report back soon]
PS EasyTracker doesn't seem to handle this any better.
I got this working by using a pageview called 'Backgrounded', and when the user has selected no background functionality, then instead the app is calling stopTracker. I see multiple hits, with an average session of 20mins, but i can multiple pageview by time to see total time for goal 2. I found two solutions for goal one, events (which were not exposed in easy tracker), and also in my applicationDidBecomeActive (if it's not a restore of backgrounded app) then i track a pageview for AppStarted. I ended up wrapping the whole thing in a utility class and rolled it into a couple of my apps, so will be interesting too see the results. If anyone else tries this, you might want to think about using the custom variables too. I added my app version to this, so I can also monitor how many users are migrating to the latest app releases.

Letting something happen at a certain time with Rails

Like with browser games. User constructs building, and a timer is set for a specific date/time to finish the construction and spawn the building.
I imagined having something like a deamon, but how would that work? To me it seems that spinning + polling is not the way to go. I looked at async_observer, but is that a good fit for something like this?
If you only need the event to be visible to the owning player, then the model can report its updated status on demand and we're done, move along, there's nothing to see here.
If, on the other hand, it needs to be visible to anyone from the time of its scheduled creation, then the problem is a little more interesting.
I'd say you need two things. A queue into which you can put timed events (a database table would do nicely) and a background process, either running continuously or restarted frequently, that pulls events scheduled to occur since the last execution (or those that are imminent, I suppose) and actions them.
Looking at the list of options on the Rails wiki, it appears that there is no One True Solution yet. Let's hope that one of them fits the bill.
I just did exactly this thing for a PBBG I'm working on (Big Villain, you can see the work in progress at MadGamesLab.com). Anyway, I went with a commands table where user commands each generated exactly one entry and an events table with one or more entries per command (linking back to the command). A secondary daemon run using script/runner to get it started polls the event table periodically and runs events whose time has passed.
So far it seems to work quite well, unless I see some problem when I throw large number of users at it, I'm not planning to change it.
To a certian extent it depends on how much logic is on your front end, and how much is in your model. If you know how much time will elapse before something happens you can keep most of the logic on the front end.
I would use your model to determin the state of things, and on a paticular request you can check to see if it is built or not. I don't see why you would need a background worker for this.
I would use AJAX to start a timer (see Periodical Executor) for updating your UI. On the model side, just keep track of the created_at column for your building and only allow it to be used if its construction time has elapsed. That way you don't have to take a trip to your db every few seconds to see if your building is done.

Resources