Get speed of model evaluation with Keras - machine-learning

I would like to retrieve metrics of speed of the model on validation data, in order to compare different parameters and their impact on speed. For example, the time spent per batch on validation data. Or, since I use hyperopt, the time spent per iteration/trial, also on validation data.
Is there any way to do so with the outputs of fit() with validation_split>0, predict() or evaluate() or the attributes of Trials in hyperopt?
If not, I guess I'll have to put time landmarks in the code but it would not be ideal for me.
Thank you!

you can achieve this by logging batch times in a custom callback invoked at the end of each evaluation batch. It would look something like this:
from keras.callbacks import Callback
import time
class BatchTimeCallback(Callback):
def on_train_begin(self, logs={}):
self.batch_times = []
def on_batch_end(self, batch, logs={}):
self.batch_times.append(time.time())
batch_time_callback = BatchTimeCallback()
...
model.evaluate(..., callbacks=[batch_time_callback])
print(batch_time_callback.batch_times)
Please note that is isn't supported in the latest release (2.2.4), so you have to use the master branch.

Related

Call to .compute() after .persist() on the same dataframe triggers complete re-evaluation

I have an issue with Dask's compute and persist methods. I understand the difference between the two methods. However, when using them as below, it doesn't behave as I expect.
feature_dataframes = [list of indexed dataframes]
features = dask.dataframe.multi.concat(feature_dataframes, axis=1)
features = features.persist()
[code making computations on features]
features.compute().to_parquet("features.parquet")
What I see in the dashboard is that the dataframes in feature_dataframes get computed twice. What I would expect is that the call to features.persist() causes features.compute() to be a very cheap operation.
Am I missing something?
Thanks.

How does one dynamically add new parameters to optimizers in Pytorch?

I was going through this post in the pytorch forum, and I also wanted to do this. The original post removes and adds layers but I think my situation is not that different. I also want to add layers or more filters or word embeddings. My main motivation is that the AI agent does not know the whole vocabulary/dictionary in advance because its large. I prefer strongly (for the moment) to not do character by character RNNs.
So what will happen for me is when the agent starts a forward pass it might find new words it has never seen and will need to add them to the embedding table (or perhaps add new filters before it starts the forward pass).
So what I want to make sure is:
embeddings are added correctly (at the right time, when a new computation graph is made) so that they are updatable by the optimizer
no issues with stored info of past parameters e.g. if its using some sort of momentum
How does one do this? Any sample code that works?
Just to add an answer to the title of your question: "How does one dynamically add new parameters to optimizers in Pytorch?"
You can append params at any time to the optimizer:
import torch
import torch.optim as optim
model = torch.nn.Linear(2, 2)
# Initialize optimizer
optimizer = optim.Adam(model.parameters(), lr=0.001, momentum=0.9)
extra_params = torch.randn(2, 2)
optimizer.param_groups.append({'params': extra_params })
#then you can print your `extra_params`
print("extra params", extra_params)
print("optimizer params", optimizer.param_groups)
That is a tricky question, as I would argue that the answer is "depends", in particular on how you want to deal with the optimizer.
Let's start with your specific problem - an embedding. In particular, you are asking on how to add embeddings to allow for a larger vocabulary dynamically. My first advice is, that if you have a good sense of an upper boundary of your vocabulary size, make the embedding large enough to cope with it from the beginning, as this is more efficient, and as you will need the memory eventually anyway. But this is not what you asked. So - to dynamically change your embedding, you'll need to overwrite your old one with a new one, and inform your optimizer of the change. You can simply do that whenever you run into an exception with your old embedding, in a try ... except block. This should roughly follow this idea:
# from within whichever module owns the embedding
# remember the already trained weights
old_embedding_weights = self.embedding.weight.data
# create a new embedding of the new size
self.embedding = nn.Embedding(new_vocab_size, embedding_dim)
# initialize the values for the new embedding. this does random, but you might want to use something like GloVe
new_weights = torch.randn(new_vocab_size, embedding_dim)
# as your old values may have been updated, you want to retrieve these updates values
new_weights[:old_vocab_size] = old_embedding_weights
self.embedding.weights.data.copy_(new_weights)
However, you should not do this for every single new word you receive, as this copying takes time (and a whole lot of memory, as the embedding exists twice for a short time - if you're nearly out memory, just make your embedding large enough from the start). So instead increase the size dynamically by a couple of hundred slots at a time.
Additionally, this first step already raises some questions:
How does my respective nn.Module know about the new embedding parameter?
The __setattr__ method of nn.Module takes care of that (see here)
Second, why don't I simply change my parameter? That's already pointing towards some of the problems of changing the optimizer: pytorch internally keeps references by object ID. This means that if you change your object, all these references will point towards a potentially incompatible object, as its properties have changed. So we should simply create a new parameter instead.
What about other nn.Parameters or nn.Modules that are not embeddings? These you treat the same. You basically just instantiate them, and attach them to their parent module. The __setattr__ method will take care of the rest. So you can do so completely dyncamically ...
Except, of course, the optimizer. The optimizer is the only other thing that "knows" about your parameters except for your main model-module. So you need to let the optimizer know of any change.
And this is tricky, if you want to be sophisticated about it, and very easy if you don't care about keeping the optimizer state. However, even if you want to be sophisticated about it, there is a very good reason why you probably should not do this anyways. More about that below.
Anyways, if you don't care, a simple
# simply overwrite your old optimizer
optimizer = optim.SGD(model.parameters(), lr=0.001)
will do. If you care, however, you want to transfer your old state, you can do so the same way that you can store, and later load parameters and optimizer states from disk: using the .state_dict() and .load_state_dict() methods. This, however, does only work with a twist:
# extract the state dict from your old optimizer
old_state_dict = optimizer.state_dict()
# create a new optimizer
optimizer = optim.SGD(model.parameters())
new_state_dict = optimizer.state_dict()
# the old state dict will have references to the old parameters, in state_dict['param_groups'][xyz]['params'] and in state_dict['state']
# you now need to find the parameter mismatches between the old and new statedicts
# if your optimizer has multiple param groups, you need to loop over them, too (I use xyz as a placeholder here. mostly, you'll only have 1 anyways, so just replace xyz with 0
new_pars = [p for p in new_state_dict['param_groups'][xyz]['params'] if not p in old_state_dict['param_groups'][xyz]['params']]
old_pars = [p for p in old_state_dict['param_groups'][xyz]['params'] if not p in new_state_dict['param_groups'][xyz]['params']]
# then you remove all the outdated ones from the state dict
for pid in old_pars:
old_state_dict['state'].pop(pid)
# and add a new state for each new parameter to the state:
for pid in new_pars:
old_state_dict['param_groups'][xyz]['params'].append(pid)
old_state_dict['state'][pid] = { ... } # your new state def here, depending on your optimizer
However, here's the reason why you should probably never update your optimizer like this, but should instead re-initialize from scratch, and just accept the loss of state information: When you change your computation graph, you change forward and backward computation for all parameters along your computation path (if you do not have a branching architecture, this path will be your entire graph). This more specifically means, that the input to your functions (=layer/nn.Module) will be different if you change some function (=layer/nn.Module) applied earlier, and the gradients will change if you change some function (=layer/nn.Module) applied later. That in turn invalidates the entire state of your optimizer. So if you keep your optimizer's state around, it will be a state computed for a different computation graph, and will probably end up in catastrophic behavior on part of your optimizer, if you try to apply it to a new computation graph. (I've been there ...)
So - to sum it up: I'd really recommend to try to keep it simple, and to only change a parameter as conservatively as possible, and not to touch the optimizer.
If you want to customize initial params:
from itertools import chain
l1 = nn.Linear(3,3)
l2 = nn.Linear(2,3)
optimizer = optim.SGD(chain(l1.parameters(), l2.parameters()), lr=0.01, momentum=0.9)
The key is that the first param of constructor receives iterator.

Batch results of intermediate dask computation

I have a large (10s of GB) CSV file that I want to load into dask, and for each row, perform some computation. I also want to write the results of the manipulated CSV into BigQuery, but it'd be better to batch network requests to BigQuery in groups of say, 10,000 rows each, so I don't incur network overhead per row.
I've been looking at dask delayed and see that you can create an arbitrary computation graph, but I'm not sure if this is the right approach: how do I collect and fire off intermediate computations based on some group size (or perhaps time elapsed). Can someone provide a simple example on that? Say for simplicity we have these functions:
def change_row(r):
# Takes 10ms
r = some_computation(r)
return r
def send_to_bigquery(rows):
# Ideally, in large-ish groups, say 10,000 rows at a time
make_network_request(rows)
# And here's how I'd use it
import dask.dataframe as dd
df = dd.read_csv('my_large_dataset.csv') # 20 GB
# run change_row(r) for each r in df
# run send_to_big_query(rows) for each appropriate size group based on change_row(r)
Thanks!
The easiest thing that you can do is provide a block size parameter to read_csv, which will get you approximately the right number of rows per block. You may need to measure some of your data or experiment to get this right.
The rest of your task will work the same way as any other "do this generic thing to blocks of data-frame": the `map_partitions' method (docs).
def alter_and_send(df):
rows = [change_row(r) for r in df.iterrows()]
send_to_big_query(rows)
return df
df.map_partitions(alter_and_send)
Basically, you are running the function on each piece of the logical dask dataframe, which are real pandas dataframes.
You may actually want map, apply or other dataframe methods in the function.
This is one way to do it - you don't really need the "output" of the map, and you could have used to_delayed() instead.

Does calling `ner.update()` multiple times makes any difference?

I am trying to understand how to add entity classes to the Named Entity Recognizer. An example code has a structure that looks like:
ner = EntityRecognizer(nlp.vocab, entity_types=[... ENTITIES ...])
for itn in range(NUMBER_OF_ITERATIONS):
for raw_text, entities in training_examples:
... some data handling ...
ner.update(doc, gold)
, but then the next example (for BILUO tags) calls ner.update() only once (i.e., no for-loops that cause update() to see the training data multiple times).
I have read this question, whose answers seem to tell me I should call update() more than once for each training example; but then I also thought they could be just following the examples.
Because of the following sentence (from the end of the documentation page)...
The costs are then used to calculate the gradient of the loss, to train the model.
... I am guessing that the answer to my question is "yes, I should train it by iterating 'several' times through the training data"; but if that is the case, then does anyone have suggestion on how many times is "enough"? (the example code uses 5, but if I think it is too less, can I end up iterating "too many times"? I.e., does it "overfit"?)

save binarizer together with sklearn model

I'm trying to build a service that has 2 components. In component 1, I train a machine learning model using sklearn by creating a Pipeline. This model gets serialized using joblib.dump (really numpy_pickle.dump). Component 2 runs in the cloud, loads the model trained by (1), and uses it to label text that it gets as input.
I'm running into an issue where, during training (component 1) I need to first binarize my data since it is text data, which means that the model is trained on binarized input and then makes predictions using the mapping created by the binarizer. I need to get this mapping back when (2) makes predictions based on the model so that I can output the actual text labels.
I tried adding the binarizer to the pipeline like this, thinking that the model would then have the mapping itself:
p = Pipeline([
('binarizer', MultiLabelBinarizer()),
('vect', CountVectorizer(min_df=min_df, ngram_range=ngram_range)),
('tfidf', TfidfTransformer()),
('clf', OneVsRestClassifier(clf))
])
But I get the following error:
model = p.fit(training_features, training_tags)
*** TypeError: fit_transform() takes 2 positional arguments but 3 were given
My goal is to make sure the binarizer and model are tied together so that the consumer knows how to decode the model's output.
What are some existing paradigms for doing this? Should I be serializing the binarizer together with the model in some other object that I create? Is there some other way of passing the binarizer to Pipeline so that I don't have to do that, and would I be able to get the mappings back from the model if I did that?
Your intuition that you should add the MultiLabelBinarizer to the pipeline was the right way to solve this problem. It would have worked, except that MultiLabelBinarizer.fit_transform does not take the fit_transform(self, X, y=None) method signature which is now standard for sklearn estimators. Instead, it has a unique fit_transform(self, y) signature which I had never noticed before. As a result of this difference, when you call fit on the pipeline, it tries to pass training_tags as a third positional argument to a function with two positional arguments, which doesn't work.
The solution to this problem is tricky. The cleanest way I can think of to work around it is to create your own MultiLabelBinarizer that overrides fit_transform and ignores its third argument. Try something like the following.
class MyMLB(MultiLabelBinarizer):
def fit_transform(self, X, y=None):
return super(MultiLabelBinarizer, self).fit_transform(X)
Try adding this to your pipeline in place of the MultiLabelBinarizer and see what happens. If you're able to fit() the pipeline, the last problem that you'll have is that your new MyMLB class has to be importable on any system that will de-pickle your now trained, pickled pipeline object. The easiest way to do this is to put MyMLB into its own module and place a copy on the remote machine that will be de-pickling and executing the model. That should fix it.
I misunderstood how the MultiLabelBinarizer worked. It is a transformer of outputs, not of inputs. Not only does this explain the alternative fit_transform() method signature for that class, but it also makes it fundamentally incompatible with the idea of inclusion in a single classification pipeline which is limited to transforming inputs and making predictions of outputs. However, all is not lost!
Based on your question, you're already comfortable with serializing your model to disk as [some form of] a .pkl file. You should be able to also serialize a trained MultiLabelBinarizer, and then unpack it and use it to unpack the outputs from your pipeline. I know you're using joblib, but I'll write this up this sample code as if you're using pickle. I believe the idea will still apply.
X = <training_data>
y = <training_labels>
# Perform multi-label classification on class labels.
mlb = MultiLabelBinarizer()
multilabel_y = mlb.fit_transform(y)
p = Pipeline([
('vect', CountVectorizer(min_df=min_df, ngram_range=ngram_range)),
('tfidf', TfidfTransformer()),
('clf', OneVsRestClassifier(clf))
])
# Use multilabel classes to fit the pipeline.
p.fit(X, multilabel_y)
# Serialize both the pipeline and binarizer to disk.
with open('my_sklearn_objects.pkl', 'wb') as f:
pickle.dump((mlb, p), f)
Then, after shipping the .pkl files to the remote box...
# Hydrate the serialized objects.
with open('my_sklearn_objects.pkl', 'rb') as f:
mlb, p = pickle.load(f)
X = <input data> # Get your input data from somewhere.
# Predict the classes using the pipeline
mlb_predictions = p.predict(X)
# Turn those classes into labels using the binarizer.
classes = mlb.inverse_transform(mlb_predictions)
# Do something with predicted classes.
<...>
Is this the paradigm for doing this? As far as I know, yes. Not only that, but if you desire to keep them together (which is a good idea, I think) you can serialize them as a tuple as I did in the example above so they stay in a single file. No need to serialize a custom object or anything like that.
Model serialization via pickle et al. is the sklearn approved way to save estimators between runs and move them between computers. I've used this process successfully many times before, including in productions systems with success.

Resources