Run e2e test with simulation of k8s - docker

we want to create e2e test (integration test ) for our applications on k8s and we want to use
minikube but it seems that there is no proper (maintained or official ) docker file for minikube. at least
I didn’t find any…In addition I see k3s and not sure which is better to run e2e test on k8s ?
I found this docker file but when I build it it fails with errors
https://aspenmesh.io/2018/01/building-istio-with-minikube-in-a-container-and-jenkins/
e - –no-install-recommends error
any idea ?

Currently there's no official way to run minikube from within a container. Here's a two months old quote from one of minikube's contributors:
It is on the roadmap. For now, it is VM based.
If you decide to go with using a VM image containing minikube, there are some guides how to do it out there. Here's one called "Using Minikube as part of your CI/CD flow
".
Alternatively, there's a project called MicroK8S backed by Canonical. In a Kubernetes Podcast ep. 39 from February, Dan Lorenc mentions this:
MicroK8s is really exciting. That's based on some new features of recent Ubuntu distributions to let you run a Kubernetes environment in an isolated fashion without using a virtual machine. So if you happen to be on one of those Ubuntu distributions and can take advantage of those features, then I would definitely recommend MicroK8s.
I don't think he's referring to running minikube in a container though, but I am not fully sure: I'd enter a Ubuntu container, try to install microk8s as a package, then see what happens.
That said, unless there's a compelling reason you want to run kubernetes from within a container and you are ready to spend the time going the possible rabbit hole – I think these days running minikube, k3s or microk8s from within a VM should be the safest bet if you want to get up and running with a CI/CD pipeline relatively quickly.

As to the problem you encountered when building image from this particular Dockerfile...
I found this docker file but when I build it it fails with errors
https://aspenmesh.io/2018/01/building-istio-with-minikube-in-a-container-and-jenkins/
e - –no-install-recommends error
any idea ?
notice that:
--no-install-recommends install
and
–no-install-recommends install
are two completely different strings. So that the error you get:
E: Invalid operation –no-install-recommends
is the result you've copied content of your Dockerfile from here and you should have rather copied it from github (you can even click raw button there to be 100% sure you copy totally plain text without any additional formatting, changed encoding etc.)

Related

How to develop and test Docker images remotely that are going to be deployed into K8s cluster that has different hardware than my local computer?

What are the "best practices" workflow for developing and testing an image (locally I guess) that is going to be deployed into a K8s cluster, and that has different hardware than my laptop?
To explain the context a bit, I'm running some deep learning code that needs gpus and my laptop doesn't have any so I launch a "training job" into the K8s cluster (K8s is probably not meant to be used this way, but is the way that we use it where I work) and I'm not sure how I should be developing and testing my Docker images.
At the moment I'm creating a container that has the desired gpu and manually running a bunch of commands till I can make the code work. Then, once I got the code running, I manually copy all the commands from history that made the code work and then copy them to a local docker file on my computer, compile it and push it to a docker hub, from which the docker image is going to be pulled the next time I launch a training job into the cluster, that will create a container from it and train the model.
The problem with this approach is that if there's a bug in the image, I have to wait until the deployment to the container to realize that my Docker file is wrong and I have to start the process all over again to change it. Also finding bugs from the output of kubectl logs is very cumbersome.
Is it a better way to do this?
I was thinking of installing docker into the docker container and use IntelliJ (or any other IDE) to attach it to the container via SSH and develop and test the image remotely; but I read in many places that this is not a good idea.
What would you recommend then instead?
Many thanks!!

CI testing with docker-compose on Jenkins with Kubernetes

I have tests that I run locally using a docker-compose environment.
I would like to implement these tests as part of our CI using Jenkins with Kubernetes on Google Cloud (following this setup).
I have been unsuccessful because docker-in-docker does not work.
It seems that right now there is no solution for this use-case. I have found other questions related to this issue; here, and here.
I am looking for solutions that will let me run docker-compose. I have found solutions for running docker, but not for running docker-compose.
I am hoping someone else has had this use-case and found a solution.
Edit: Let me clarify my use-case:
When I detect a valid trigger (ie: push to repo) I need to start a new job.
I need to setup an environment with multiple dockers/instances (docker-compose).
The instances on this environment need access to code from git (mount volumes/create new images with the data).
I need to run tests in this environment.
I need to then retrieve results from these instances (JUnit test results for Jenkins to parse).
The problems I am having are with 2, and 3.
For 2 there is a problem running this in parallel (more than one job) since the docker context is shared (docker-in-docker issues). If this is running on more than one node then i get clashes because of shared resources (ports for example). my workaround is to only limit it to one running instance and queue the rest (not ideal for CI)
For 3 there is a problem mounting volumes since the docker context is shared (docker-in-docker issues). I can not mount the code that I checkout in the job because it is not present on the host that is responsible for running the docker instances that I trigger. my workaround is to build a new image from my template and just copy the code into the new image and then use that for the test (this works, but means I need to use docker cp tricks to get data back out, which is also not ideal)
I think the better way is to use the pure Kubernetes resources to run tests directly by Kubernetes, not by docker-compose.
You can convert your docker-compose files into Kubernetes resources using kompose utility.
Probably, you will need some adaptation of the conversion result, or maybe you should manually convert your docker-compose objects into Kubernetes objects. Possibly, you can just use Jobs with multiple containers instead of a combination of deployments + services.
Anyway, I definitely recommend you to use Kubernetes abstractions instead of running tools like docker-compose inside Kubernetes.
Moreover, you still will be able to run tests locally using Minikube to spawn the small all-in-one cluster right on your PC.

How to run puppet/systemctl inside docker container centos7

My question revolves around the following problem/error.
Service/Service[jenkins]: Provider redhat is not functional on this host. OR directly that D-BUS not available.
Let's say for instance i'm running packer, which invokes a puppet-masterless provisioner on a docker builder.
The puppet code base & contrib modules for the most part will attempt to manage the 'service' of the installed module. For instance, lets take Jenkins as an example. Jenkins puppet module although good, will fail, on packer builds to a centos7 & puppet docker host. As systemctl will not be available.
At this moment in time i'm confused how this would/will ever work for puppet/ansible code bases which attempt to manage the service. Without considerable extra effort to the codebase.
I have considered the contain running being /sbin/init but still feels a bit hacky.
Can anyone shed any light on this issue for me?
I am using ansible code to provision real machines or docker containers - to get away with SystemD / D-Bus I have created the docker-systemctl-replacement

Docker, Jenkins and Rails - Setup for running specs on a typical Rails stack

I would like a Jenkins master and slave setup for running specs on standard Rails apps (PostgreSQL, sidekiq/redis, RSPec, capybara-webkit, a common Rails stack), using docker so it can be put on other machines as well. I got a few good stationary machines collecting dust.
Can anybody share an executable docker jenkins rails stack example?
What prevents that from being done?
Preferable with master-slave setup too.
Preface:
After days online, following several tutorials with no success, I am about to abandon project. I got a basic understanding of docker, docker-machine, docker compose and volumes, I got a docker registry of a few simple apps.
I know next to nothing about Jenkins, but I've used Docker pretty extensively on other CI platforms. So I'll just write about that. The level of difficulty is going to vary a lot based on your app's dependencies and quirks. I'll try and give an outline that's pretty generally useful, and leave handling application quirks up to you.
I don't think the problem you describe should require you to mess about with docker-machine. docker build and docker-compose should be sufficient.
First, you'll need to build an image for your application. If your application has a comprehensive Gemfile, and not too many dependencies relating to infrastructure etc (e.g. files living in particular places that the application doesn't set up for itself), then you'll have a pretty easy time. If not, then setting up those dependencies will get complicated. Here's a guide from the Docker folks for a simple Rails app that will help get you started.
Once the image is built, push it to a repository such as Docker Hub. Log in to Docker Hub and create a repo, then use docker login and docker push <image-name> to make the image accessible to other machines. This will be important if you want to build the image on one machine and test it on others.
It's probably worth spinning off a job to run your app's unit tests inside the image once the image is built and pushed. That'll let you fail early and avoid wasting precious execution time on a buggy revision :)
Next you'll need to satisfy the app's external dependencies, such as Redis and postgres. This is where the Docker Compose file comes in. Use it to specify all the services your app needs, and the environment variables etc that you'll set in order to run the application for testing (e.g. RAILS_ENV).
You might find it useful to provide fakes of some non-essential services such as in-memory caches, or just leave them out entirely. This will reduce the complexity of your setup, and be less demanding on your CI system.
The guide from the link above also has an example compose file, but you'll need to expand on it. The most important thing to note is that the name you give a service (e.g. db in the example from the guide) is used as a hostname in the image. As #tomwj suggested, you can search on Docker Hub for common images like postgres and Redis and find them pretty easily. You'll probably need to configure a new Rails environment with new hostnames and so on in order to get all the service hostnames configured correctly.
You're starting all your services from scratch here, including your database, so you'll need to migrate and seed it (and any other data stores) on every run. Because you're starting from an empty postgres instance, expect that to take some time. As a shortcut, you could restore a backup from a previous version before migrating. In any case, you'll need to do some work to get your data stores into shape, so that your test results give you useful information.
One of the tricky bits will be getting Capybara to run inside your application Docker image, which won't have any X displays by default. xvfb (X Virtual Frame Buffer) can help with this. I haven't tried it, but building on top of an image like this one may be of some help.
Best of luck with this. If you have the time to persist with it, it will really help you learn about what your application really depends on in order to work. It certainly did for me and my team!
There's quite a lot to unpack in that question, this is a guide of how to get started and where to look for help.
In short there's nothing preventing it, although it's reasonably complex and bespoke to setup. So hence no off-the-shelf solution.
Assuming your aim is to have Jenkins build, deploy to Docker, then test a Rails application in a Dockerised environment.
Provision the stationary machines, I'd suggest using Ansible Galaxy roles.
Install Jenkins
Install Docker
Setup a local Docker registry
Setup Docker environment, the way to bring up multiple containers is to use docker compose this will allow you to bring up the DB, redis, Rails etc... using the public docker hub images.
Create a Jenkins pipeline
Build the rails app docker image this will contain the rails app.
Deploy the application, this updates the application in the Docker swarm, from the local Docker registry.
Test, run the tests against the application now running.
I've left out the Jenkins master/slave config because if you're only running on one machine you can increase the number of executors. E.g. the master can execute more jobs at the expense of speed.

Is it possible/sane to develop within a container Docker

I'm new to Docker and was wondering if it was possible (and a good idea) to develop within a docker container.
I mean create a container, execute bash, install and configure everything I need and start developping inside the container.
The container becomes then my main machine (for CLI related works).
When I'm on the go (or when I buy a new machine), I can just push the container, and pull it on my laptop.
This sort the problem of having to keep and synchronize your dotfile.
I haven't started using docker yet, so is it something realistic or to avoid (spacke disk problem and/or pull/push timing issue).
Yes. It is a good idea, with the correct set-up. You'll be running code as if it was a virtual machine.
The Dockerfile configurations to create a build system is not polished and will not expand shell variables, so pre-installing applications may be a bit tedious. On the other hand after building your own image to create new users and working environment, it won't be necessary to build it again, plus you can mount your own file system with the -v parameter of the run command, so you can have the files you are going to need both in your host and container machine. It's versatile.
> sudo docker run -t -i -v
/home/user_name/Workspace/project:/home/user_name/Workspace/myproject <container-ID>
I'll play the contrarian and say it's a bad idea. I've done work where I've tried to keep a container "long running" and have modified it, but then accidentally lost it or deleted it.
In my opinion containers aren't meant to be long running VMs. They are just meant to be instances of an image. Start it, stop it, kill it, start it again.
As Alex mentioned, it's certainly possible, but in my opinion goes against the "Docker" way.
I'd rather use VirtualBox and Vagrant to create VMs to develop in.
Docker container for development can be very handy. Depending on your stack and preferred IDE you might want to keep the editing part outside, at host, and mount the directory with the sources from host to the container instead, as per Alex's suggestion. If you do so, beware potential performance issue on macos x with boot2docker.
I would not expect much from the workflow with pushing the images to sync between dev environments. IMHO keeping Dockerfiles together with the code and synching by SCM means is more straightforward direction to start with. I also carry supporting Makefiles to build image(s) / run container(s) same place.

Resources