Vine Row Detection in Noisy Image - image-processing

I'm trying to detect vine rows to use in plant health detection and crop yield in an image that contains a lot of trees, other vegetation and insignificant objects. The objects and trees can be in between the vine rows and need to be segmented before further processing. The images are multispectral, taken by UAV.
Plan A is to use DCM and NDVI agricultural indexes, and use a threshold to cut off the ones that are too high for a vine row. However, the UAV we use can give some bad results for DCM so I need a plan B.
Using opencv, I skeletonized the image, which created some connected lines and dots that may be noises. However, removing those dots can lead to information loss, so it's not optimal.
I have seen circle detection methods and Watershed algorithm, but when objects are too close to each other they tend to get grouped together.
The expected result should be that the vine rows and the other images are clearly segmentated from each other. I need someone to guide me in the right direction. Any help will be appreciated.
Here is the picture for the field I'm working on: https://i.stack.imgur.com/CqX5z.jpg
Here's my attempt to segmentate it using DCM and NDVI: https://i.stack.imgur.com/AEaR3.jpg

Related

Recognition and counting of books from side using OpenCV

Just wish to receive some ideas on I can solve this problem.
For a clearer picture, here are examples of some of the image that we are looking at:
I have tried looking into thresholding it, like otsu, blobbing it, etc. However, I am still unable to segment out the books and count them properly. Hardcover is easy of course, as the cover clearly separates the books, but when it comes to softcover, I have not been able to successfully count the number of books.
Does anybody have any suggestions on what I can do? Any help will be greatly appreciated. Thanks.
I ran a sobel edge detector and used Hough transform to detect lines on the last image and it seemed to be working okay for me. You can then link the edges on the output of the sobel edge detector and then count the number of horizontal lines. Or, you can do the same on the output of the lines detected using Hough.
You can further narrow down the area of interest by converting the image into a binary image. The outputs of all of these operators can be seen in following figure ( I couldn't upload an image so had to host it here) http://www.pictureshoster.com/files/v34h8hvvv1no4x13ng6c.jpg
Refer to http://www.mathworks.com/help/images/analyzing-images.html#f11-12512 for some more useful examples on how to do edge, line and corner detection.
Hope this helps.
I think that #audiohead's recommendation is good but you should be careful when applying the Hough transform for images that will have the library's stamp as it might confuse it with another book (You can see that the letters form some break-lines that will be detected by sobel).
Consider to apply first an edge preserving smoothing algorithm such as a Bilateral Filter. When tuned correctly (setting of the Kernels) it can avoid these such of problems.
A Different Solution That Might Work (But can be slow)
Here is a different approach that is based on pixel marking strategy.
a) Based on some very dark threshold, mark all black pixels as visited.
b) While there are unvisited pixels: Pick the next unvisited pixel and apply a region-growing algorithm http://en.wikipedia.org/wiki/Region_growing while marking its pixels with a unique number. At this stage you will need to analyse the geometric shape that this region is forming. A good criteria to detecting a book is that the region is creating some form of a rectangle where width >> height. This will detect a book and mark all its pixels to the unique number.
Once there are no more unvisited pixels, the number of unique numbers is the number of books you will have + For each pixel on your image you will now to which book does it belongs.
Do you have to keep the books this way? If you can change the books to face back side to the camera then I think you can get more information about the different colors used by different books.The lines by Hough transform or edge detection will be more prominent this way.
There exist more sophisticated methods which are much better in contour detection and segmentation, you can have a look at them here, however it is quite slow, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
Once you get the ultrametric contour map, you can perform some computation on them to count the number of books
I would try a completely different approach; with paperbacks, the covers are medium-dark lines whilst the rest of the (assuming white pages) are fairly white and "bloomed", so I'd try to thicken up the dark edges to make them easy to detect, then that would give the edges akin to working with hardbacks which you say you've done.
I'd try something like an erosion to thicken up the edges. This would be a nice, fast operation.

Extract numbers from Image

I have an image for mobile phone credit recharge card and I want to extract the recharge number only (the gray area) as a sequence of number that can be used to recharge the phone directly
This is a sample photo only and cannot be considered as standard, thus the rectangle area may differ in position , in the background and the card also may differ in size .The scratch area may not be fully scratched , the camera's depth and position may differ too . I read a lots and lots of papers on the internet but i can't find any thing that could be interesting and most of papers discuss detection of handwritten numbers .
Any links or algorithms names could be very useful .
You can search the papers on vehicle plate number detection with machine learning methods. Basically you need to extract the number first, you may use sobel filter to extract the vertical edges , then threshold (binary image) and morphologic operations (remove blank spaces between each vertical edge line, and connect all regions that have a high number of edges). Finally retrieve the contour and fill in the connected components with mask.
After you extract the numbers , you can use machine learning method such as neural network and svm to recognize them.
Hope it helps.
Extract the GRAY part from image and then Use Tesseract(OCR) to extract the text written on the gray image.
I think you may not find the algorithm to read from the image on the internet. Nobody will disclose that. I think, if you are a hardcore programmer you can crack that using your own code. I tried from the screenshots where the fonts were clearer and the algorithm was simple. For this, the algorithm should be complex since you are reading from photo source instead of a screenshot.
Follow the following steps:
Load the image.
Select the digits ( By contour finding and applying constraints on area and height of letters to avoid false detections). This will split the image and thus modularise the OCR operation you want to perform.
A simple K - nearest neighbour algorithm for performing the identification and classification.
If the end goal was just to make a bot, you could probably pull the text directly from the app rather than worrying about OCR, but if you want to learn more about machine learning and you haven't done them already the MNIST and CIFAR-10 datasets are fantastic places to start.
If you preprocessed your image so that yellow pixels are black and all others are white you would have a much cleaner source to work with.
If you want to push forward with Tesseract for this and the preprocessing isn't enough then you will probably have to retrain it for this font. You will need to prepare a corpus, process it similarly to how you expect your source data to look, and then use something like qt-box-editor to correct the data. This guide should be able to walk you through the basic steps of retraining.

find mosquitos' head in the image

I have images of mosquitos similar to these ones and I would like to automatically circle around the head of each mosquito in the images. They are obviously in different orientations and there are random number of them in different images. some error is fine. Any ideas of algorithms to do this?
This problem resembles a face detection problem, so you could try a naïve approach first and refine it if necessary.
First you would need to recreate your training set. For this you would like to extract small images with examples of what is a mosquito head or what is not.
Then you can use those images to train a classification algorithm, be careful to have a balanced training set, since if your data is skewed to one class it would hit the performance of the algorithm. Since images are 2D and algorithms usually just take 1D arrays as input, you will need to arrange your images to that format as well (for instance: http://en.wikipedia.org/wiki/Row-major_order).
I normally use support vector machines, but other algorithms such as logistic regression could make the trick too. If you decide to use support vector machines I strongly recommend you to check libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/), since it's a very mature library with bindings to several programming languages. Also they have a very easy to follow guide targeted to beginners (http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf).
If you have enough data, you should be able to avoid tolerance to orientation. If you don't have enough data, then you could create more training rows with some samples rotated, so you would have a more representative training set.
As for the prediction what you could do is given an image, cut it using a grid where each cell has the same dimension that the ones you used on your training set. Then you pass each of this image to the classifier and mark those squares where the classifier gave you a positive output. If you really need circles then take the center of the given square and the radius would be the half of the square side size (sorry for stating the obvious).
So after you do this you might have problems with sizes (some mosquitos might appear closer to the camera than others) , since we are not trained the algorithm to be tolerant to scale. Moreover, even with all mosquitos in the same scale, we still might miss some of them just because they didn't fit in our grid perfectly. To address this, we will need to repeat this procedure (grid cut and predict) rescaling the given image to different sizes. How many sizes? well here you would have to determine that through experimentation.
This approach is sensitive to the size of the "window" that you are using, that is also something I would recommend you to experiment with.
There are some research may be useful:
A Multistep Approach for Shape Similarity Search in Image Databases
Representation and Detection of Shapes in Images
From the pictures you provided this seems to be an extremely hard image recognition problem, and I doubt you will get anywhere near acceptable recognition rates.
I would recommend a simpler approach:
First, if you have any control over the images, separate the mosquitoes before taking the picture, and use a white unmarked underground, perhaps even something illuminated from below. This will make separating the mosquitoes much easier.
Then threshold the image. For example here i did a quick try taking the red channel, then substracting the blue channel*5, then applying a threshold of 80:
Use morphological dilation and erosion to get rid of the small leg structures.
Identify blobs of the right size to be moquitoes by Connected Component Labeling. If a blob is large enough to be two mosquitoes, cut it out, and apply some more dilation/erosion to it.
Once you have a single blob like this
you can find the direction of the body using Principal Component Analysis. The head should be the part of the body where the cross-section is the thickest.

Noisy kinect color (rgb) images

i'm using opencv interface (http://docs.opencv.org/doc/user_guide/ug_highgui.html?highlight=kinect) to get color (rgb) and depth frames from a kinect camera. For a standard VGA 640x480 resolution and with code like
capture.retrieve( bgrImage, OPENNI_BGR_IMAGE );
i get this :
I think this is really noisy. Is this normal quality for a kinect rgb camera?
I tried various filtering (blurring, sharpening, opening..) procedures but i got minor improvements.
The conditions under which this image was taken are unknown to me, and I cannot attest the quality of the images taken using Kinect, so I'm ignoring this part of the question.
A very simple thing you can do to likely improve the image quality is to average several frames you might be getting. That is it.
Another options include, for example, Bilateral Filtering or Mean Shift Filtering (and I'm not sure how you would do the later purely with ready OpenCV functions) that can handle well this kind of noise. For instance, here are three rows of images. In the second column you see the edges found by Canny for the image in the first column. The first row shows the input image as is, the second row is the result of a particular Mean Shift, and the last one is for Bilateral Filtering.
While the results are particularly good, the problem is that these filtering techniques are slow for the typical computers used nowadays.

What is the correct method to auto-crop objects from light background?

I'm trying to extract objects from scanned images. There could be a few documents on a white background, and I need to crop and rotate them automatically. This seems like a rather simple task, but I've got stuck at some point and get bad results all the time.
I've tried to:
Binarise the image and get connected components by performing morphological operations.
Perform watershed segmentation by using dilated and eroded binary images as mask components.
Apply Canny detector and fill the contours.
None of this gets me good results. If the object does't have contrast edges (i.e a piece of paper on white background), it splits into a lot of separate components. If I connect these components by applying excessive dilation, background noise also expands and everything becomes a mess.
For example, I have an image:
After applying Canny detector and filling the contours I get something like this:
As you can see, the components are not connected. They are eve too far from each other to be connected by a reasonable amount of dilation. And when I apply watershed to this mask combined with some background points, it yields very bad results.
Some images are noisy:
In this particular case I was able to obtain contour of the whole passport by Canny detector because of it's contrast edges. But threshold method doesn't work here.
If the images are always on a very light background, then you can binarize with a threshold close to the maximum possible value. After that it is a matter of correcting the binary image to get the objects, but this step will vary depending on how your other images look like.
For instance, the following image at left is what we get with a threshold at 99% of the maximum value after a gaussian filtering on the input. After removing components connected to the border and other small components, and also combining with some basic morphological tools, we get the image at right.
This may seem a bit wishy-washy but bear with me:
This looks like quite a challenging case for image processing recipes involving only edge detection, morphological operations and segmentation.
What you are not exploiting here is that you (I believe) know what your document should look like. You are currently looking at completely general solutions which do not take into account this prior knowledge. If you can get some training data then you can go all the way from simple template/patch-based matching (SSD, Normalized Cross-Correlation) to more sophisticated object detection techniques to find the position and rotation of your documents.
My guess is that if your objects are always more or less the same and at the same scale (e.g. passports scanned at a fixed resolution/similar machines) then you can get away with a fairly crude approach. There won't be any one correct method. It's also likely that the technique you end up using will not work until you have done a significant amount of parameter tweaking, so don't give up on anything too quickly.

Resources