Am I thinking about OAuth 2 correctly - oauth-2.0

I've been building and tinkering with Bearer tokens and OAuth/OAuth2 for a couple years now. And I feel like I have it decently understood, but when I search for how to do what I want, I can't seem to find it.
General understanding. There's a server that GRANTS tokens (and validates/invalidates/refreshes tokens as well). And then there's servers (or apps) that utilize the token. I'm not doing anything with external api libraries, but we have several company sites and I want to create a single login server that grants access tokens.
So I would have 1 server to GRANT the tokens, and then a separate API server that uses that token to authorize a user to endpoints and of course the front end portion. But the issue I seem to run into is figuring out how to setup a server to USE the token. Everyone just seems to explain how to create the server that grants it. That's cool, and I know how to get a token from google and use it. But I want to create a server that is granting authorization via access tokens.
So, my SPA app, lets say react, request an access token from server A which is an OAuth2 server. We're using credentials flow since it's company/registered users logging in. If they are successful, they are granted an access and identity token. Cool. Store those on the front end. Then, I want to request my...appointments from server B, the websites API server. I pass said access token as a bearer token. Server B should be setup as an OAuth 2 server but only as a client server. If the scope and client of the access token (and the secret of course) don't match the access token, the user is denied access to server B's endpoints. Server B doesn't NEED to validate the access token since it's aware of the secret used from Server A. It can validate it itself.
Is this correct or am I massively looking at OAuth2 wrong?

Related

oAuth Server to Server grant flow

I have implemented an OAuth 2.0 server-to-server authentication for a web application I am developing.
Both services are internal to my company, so I send a request from server A to server B containing the username, password, client_id and client_secret then I receive an access_token in response.
After that, I can send a second request from A to B containing the access_token in the header to pull some data.
The data retrieved from server B to server A is finally passed to the view in server A and shown to the end-user.
Therefore I never ask for any inputs to the end-user, because I am using the above "service account" to pull the data that I need. The end-users do not even know anything about such a connection in the background.
Having that said, I am now getting mad to explain to my colleagues that this is a secure approach.
I was wondering if somebody has any official documentation or best practices to share with me that can help to justify to the IT vertical that this approach is correct. I have been told that the basic auth method is not allowed in the company, but this is not really basic auth, isn't it?!
I cannot even find the right name for this, somebody refers to this method as password grant flow, somebody else as two-legged OAuth. The fact is, in my case all interaction happens server-server without any inputs needed from the end users.
Any help is much appreciated!
RESOURCE OWNER PASSWORD GRANT
You are using this flow between Server A and Server B, which is not recommended because OAuth applications should not have access to the the end user's password. It is more standard to use the Client Credentials Flow for Server to Server calls.
OAUTH TOKEN ISSUER
Another aspect that is non standard is that Server B should not issue its own tokens. It is more standard to use an off the shelf Authorization Server (AS) to deal with OAuth messages and token issuing. The AS is the only party that sees credentials - your UIs and APIs only ever use tokens, which have a short expiry compared to credentials.

How to convert OAuth code with an access token

Imagine you're going through a standard OAuth2 process to retrieve an access_token for some third-party API. This is the usual process.
User is redirected to http://some-service.com/login
User successfully logs in and is redirected to some destination http://some-destination.com. In this step, there's usually a code parameter that comes with the request. So the actual URL looks like http://some-destination.com?code=CODE123
I need to use CODE123 to request an access_token that can be used to authorize my future API calls. To do this, there's an endpoint that usually looks like this (I am using Nylas as an example but should be generic enough):
As you can see, it requires me to POST the code from above (CODE123) along with client_id and client_secret like this: http://some-service.com/oauth/token?code=CODE123&client_secret=SECRET&client_id=ID. As a response, I get an access_token that looks like TOKEN123 and I can use this to make API calls.
QUESTION
Until step 2, everything happens in the client side. But in step 3, I need to have client_id and client_secret. I don't think it's a good idea to store these values in the client side. Does that mean I need to have a backend server that has these two values, and my backend should convert CODE123 to TOKEN123 and hand it to the client side?
As you probably know, the question describes the most common (and usually, the more secure) OAuth "Authorization Code" flow. To be clear, here's an approximation of the steps in this flow:
User indicates that they wish to authorize resources for our application (for example, by clicking on a button)
The application redirects the user to the third-party login page, where the user logs in and selects which resources to grant access to
The third-party service redirects the user back to our application with an authorization code
Our application uses this code, along with its client ID and secret to obtain an access token that enables the application to make requests on behalf of the user only for the resources that the user allowed
Until step 2, everything happens in the client side. But in step 3, I need to have client_id and client_secret. I don't think it's a good idea to store these values in the client side. Does that mean I need to have a backend server that has these two values[?]
You're correct, it's certainly not a good idea to store these values in the client-side application. These values—especially the client secret—must be placed on a server to protect the application's data. The user—and therefor, the client application—should never have access to these values.
The server uses its client ID and secret, along with the authorization code, to request an access token that it uses for API calls. The server may store the token it receives, along with an optional refresh token that it can use in the future to obtain a new access token without needing the user to explicitly authorize access again.
...and my backend should convert CODE123 to TOKEN123 and hand it to the client side?
At the very least, our server should handle the authorization flow to request an access token, and then pass only that token back to the client (over a secure connection).
However, at this point, the client-side application (and the user of that client) is responsible for the security of the access token. Depending on the security requirements of our application, we may want to add a layer to protect this access token from the client as well.
After the server-side application fetches the access token from the third-party service, if we pass the access token back to the client, malware running on the client machine, or an unauthorized person, could potentially obtain the access token from the client, which an attacker could then use to retrieve or manipulate the user's third-party resources through privileges granted to our application. For many OAuth services, an access token is not associated with a client. This means that anyone with a valid token can use the token to interact with the service, and illustrates why our application should only request the minimum scope of access needed when asking for authorization from the user.
To make API calls on behalf of a user more securely, the client-side application could send requests to our server, which, in turn, uses the access token that it obtained to interact with the third-party API. With this setup, the client does not need to know the value of the access token.
To improve performance, we likely want to cache the access token on the server for subsequent API calls for the duration of its lifetime. We may also want to encrypt the tokens if we store them in the application's database—just like we would passwords—so the tokens cannot be easily used in the event of a data breach.

Why do you need authorization grant when you can just give the token out directly?

Watching this video, it details in OAuth2 that the client application first has to get the authorization grant from the Authorization server and then use that grant to get a token before being able to access the resource server. What purpose does the grant serve? Why not give the client the token right away after the user signs on with his/her username and password?
Because it is more secure, for some application types.
What you describe is so called authorization-code-flow. It is normally used for "classical" web applications, where only the backend needs to access resource server. The exchange of authorization code to access token happens on the backend and access token never leaves it. Exchange can be done only once and in addition client id and secret (stored on the backend) are necessary.
Single-Page-Applications often use implicit-flow where access token is delivered to the frontend directly in the URL.
See more here:
IdentityServer Flows
EDIT: Q: "I still don't see how it is more secure given that you have to have the grant in order to get the token. Why need 2 things instead of just 1 thing to access the resource? If someone steals the token, they can access the resource anyway – stackjlei"
"Stealing" access token will work independent on how your application acquires it. However, stealing access token on the backend is much more difficult than on the frontend.
Authorization code is delivered to the backend also over the frontend but the risk that someone intercepts and uses it is tiny:
It can be exchanged only once.
You need client-id and client-secret in order to exchange it. Client-secret is only available on the backend.
Normally, authorization code will be exchanged by your backend to access-token immediately. So the lifetime of it is just several seconds. It does not matter if someone gets hold of used authorization code afterwards.
In your scenario there could be two servers, an Authorization and a Resource one.
It could be only one as well, but let's imagine this scenario.
The purpose of the Authorization Server is to issue short lived access tokens to known clients. The clients identify themselves via their CLientID and CLientSecret.
The Authorization Server ( AS ) holds the list of clients and their secrets and first checks to make sure the passed values match its list. If they do, it issues a short lived token.
Then the client can talk to the Resource Server ( RS ), while the token is valid. Once the token expires, a new one can be requested or the expired one can be refreshed if that is allowed by the Authorization Server.
The whole point here is security, Normally, the access tokens are passed in the Authorization header of the request and that request needs to be over https to make sure that the data can't be stolen. If, somehow, someone gets hold of an access token, they can only use it until it expires, hence why the short life of the tokens is actually very important. That's why you don't issue one token which never expires.
You have different type of OAuth. On type doesn't require to use the 'grant' authorization. It depend who are the user/application, the ressource owner and the server API.
This way, you - as a user - don't send the password to the application. The application will only use the grant token to gain access to your ressources.
I think this tuto is a pretty good thing if you want more details
https://www.digitalocean.com/community/tutorials/an-introduction-to-oauth-2

Why does authorization grant flow skip the authorization code just return an access token?

I'm learning about O Auth 2 from here
I was wondering in the step of "Authorization server redirects user agent to client with authorization code", why doesn't the server just give the access token instead? Why give an authorization code that then is used to get the access token? Why not just give the access token directly? Is it because there there is a different access token for each resource so that you need to go through O Auth again to access a different resource?
The authorization grant code can pass through unsecured or potentially risky environments such as basic HTTP connection (not HTTPS) or a browser. But it's worthless without a client secret. The client can be a backend application. If the OAuth2 server returned a token, it could get compromised.
There is another OAuth2 flow - the Implicit flow, which returns an access token right after the authentication, but it's designed mainly for JavaScript applications or other deployments where it's safe to use it.
If a malicious app gets hold of the client id of your app(which is easily available, for example one can inspect the source), then it can use that to retrieve the token without the use of the client secret. All the malicious app needs to do is to somehow either specify the redirect URI to itself or to tap into the registered redirect URI.
That is the reason for breaking the flow as such. Note, when the client secret is not to be used as in SPA (Single Page Apps) or Mobile Apps, then PKCE comes to the rescue.
There is a reason for breaking up the authorization flow so as to keep the resource owner's interaction with the authorization server isolated from the client's interactions with the authorization server. Therefore we need to have two interactions with the authorization server. One in which the resource owner authenticates with it's credentials to the authorization server. And another where the client sends in it's client secret to the authorization server.
Please also see PKCE that deals with SPA (SinglePageApp)/Mobile apps.

What is the difference between the OAuth Authorization Code and Implicit workflows? When to use each one?

OAuth 2.0 has multiple workflows. I have a few questions regarding the two.
Authorization code flow - User logs in from client app, authorization server returns an authorization code to the app. The app then exchanges the authorization code for access token.
Implicit grant flow - User logs in from client app, authorization server issues an access token to the client app directly.
What is the difference between the two approaches in terms of security? Which one is more secure and why?
I don't see a reason why an extra step (exchange authorization code for token) is added in one work flow when the server can directly issue an Access token.
Different websites say that Authorization code flow is used when client app can keep the credentials secure. Why?
The access_token is what you need to call a protected resource (an API). In the Authorization Code flow there are 2 steps to get it:
User must authenticate and returns a code to the API consumer (called the "Client").
The "client" of the API (usually your web server) exchanges the code obtained in #1 for an access_token, authenticating itself with a client_id and client_secret
It then can call the API with the access_token.
So, there's a double check: the user that owns the resources surfaced through an API and the client using the API (e.g. a web app). Both are validated for access to be granted. Notice the "authorization" nature of OAuth here: user grants access to his resource (through the code returned after authentication) to an app, the app get's an access_token, and calls on the user's behalf.
In the implicit flow, step 2 is omitted. So after user authentication, an access_token is returned directly, that you can use to access the resource. The API doesn't know who is calling that API. Anyone with the access_token can, whereas in the previous example only the web app would (it's internals not normally accessible to anyone).
The implicit flow is usually used in scenarios where storing client id and client secret is not recommended (a device for example, although many do it anyway). That's what the the disclaimer means. People have access to the client code and therefore could get the credentials and pretend to become resource clients. In the implicit flow all data is volatile and there's nothing stored in the app.
I'll add something here which I don't think is made clear in the above answers:
The Authorization-Code-Flow allows for the final access-token to never reach and never be stored on the machine with the browser/app. The temporary authorization-code is given to the machine with the browser/app, which is then sent to a server. The server can then exchange it with a full access token and have access to APIs etc. The user with the browser gets access to the API only through the server with the token.
Implicit flow can only involve two parties, and the final access token is stored on the client with the browser/app. If this browser/app is compromised so is their auth-token which could be dangerous.
tl;dr don't use implicit flow if you don't trust the users machine to hold tokens but you do trust your own servers.
The difference between both is that:
In Implicit flow,the token is returned directly via redirect URL with "#" sign and this used mostly in javascript clients or mobile applications that do not have server side at its own, and the client does not need to provide its secret in some implementations.
In Authorization code flow, code is returned with "?" to be readable by server side then server side is have to provide client secret this time to token url to get token as json object from authorization server. It is used in case you have application server that can handle this and store user token with his/her profile on his own system, and mostly used for common mobile applications.
so it is depends on the nature of your client application, which one more secure "Authorization code" as it is request the secret on client and the token can be sent between authorization server and client application on very secured connection, and the authorization provider can restrict some clients to use only "Authorization code" and disallow Implicit
Which one is more secure and why?
Both of them are secure, it depends in the environment you are using it.
I don't see a reason why an extra step (exchange authorization code
for token) is added in one work flow when the server can directly
issue an Access token.
It is simple. Your client is not secure. Let's see it in details.
Consider you are developing an application against Instagram API, so you register your APP with Instagram and define which API's you need. Instagram will provide you with client_id and client_secrect
On you web site you set up a link which says. "Come and Use My Application". Clicking on this your web application should make two calls to Instagram API.
First send a request to Instagram Authentication Server with below parameters.
1. `response_type` with the value `code`
2. `client_id` you have get from `Instagram`
3. `redirect_uri` this is a url on your server which do the second call
4. `scope` a space delimited list of scopes
5. `state` with a CSRF token.
You don't send client_secret, You could not trust the client (The user and or his browser which try to use you application). The client can see the url or java script and find your client_secrect easily. This is why you need another step.
You receive a code and state. The code here is temporary and is not saved any where.
Then you make a second call to Instagram API (from your server)
1. `grant_type` with the value of `authorization_code`
2. `client_id` with the client identifier
3. `client_secret` with the client secret
4. `redirect_uri` with the same redirect URI the user was redirect back to
5. `code` which we have already received.
As the call is made from our server we can safely use client_secret ( which shows who we are), with code which shows the user have granted out client_id to use the resource.
In response we will have access_token
The implicit grant is similar to the authorization code grant with two distinct differences.
It is intended to be used for user-agent-based clients (e.g. single page web apps) that can’t keep a client secret because all of the application code and storage is easily accessible.
Secondly instead of the authorization server returning an authorization code which is exchanged for an access token, the authorization server returns an access token.
Please find details here
http://oauth2.thephpleague.com/authorization-server/which-grant/
Let me summarize the points that I learned from above answers and add some of my own understandings.
Authorization Code Flow!!!
If you have a web application server that act as OAuth client
If you want to have long lived access
If you want to have offline access to data
when you are accountable for api calls that your app makes
If you do not want to leak your OAuth token
If you don't want you application to run through authorization flow every time it needs access to data. NOTE: The Implicit Grant flow does not entertain refresh token so if authorization server expires access tokens regularly, your application will need to run through the authorization flow whenever it needs access.
Implicit Grant Flow!!!
When you don't have Web Application Server to act as OAuth Client
If you don't need long lived access i.e only temporary access to data is required.
If you trust the browser where your app runs and there is limited concern that the access token will leak to untrusted users.
Implicit grant should not be used anymore, see the IETF current best practices for details. https://datatracker.ietf.org/doc/html/draft-ietf-oauth-security-topics-18#section-2.1.2
As an alternative use a flow with response type code; for clients without possibility to securely store client credentials the authorization code with PKCE flow should be your choice.
From practical perspective (What I understood), The main reason for having Authz code flow is :
Support for refresh tokens (long term access by apps on behalf of User), not supported in implicit: refer:https://www.rfc-editor.org/rfc/rfc6749#section-4.2
Support for consent page which is a place where Resource Owner can control what access to provide (Kind of permissions/authorization page that you see in google). Same is not there in implicit . See section : https://www.rfc-editor.org/rfc/rfc6749#section-4.1 , point (B)
"The authorization server authenticates the resource owner (via the user-agent) and establishes whether the resource owner grants or denies the client's access request"
Apart from that, Using refresh tokens, Apps can get long term access to user data.
There seem to be two key points, not discussed so far, which explain why the detour in the Authorization Code Grant Type adds security.
Short story: The Authorization Code Grant Type keeps sensitive information from the browser history, and the transmission of the token depends only on the HTTPS protection of the authorization server.
Longer version:
In the following, I'll stick with the OAuth 2 terminology defined in the RFC (it's a quick read): resource server, client, authorization server, resource owner.
Imagine you want some third-party app (= client) to access certain data of your Google account (= resource server). Let's just assume Google uses OAuth 2. You are the resource owner for the Google account, but right now you operate the third-party app.
First, the client opens a browser to send you to the secure URL of the Google authorization server. Then you approve the request for access, and the authorization server sends you back to the client's previously-given redirect URL, with the authorization code in the query string. Now for the two key points:
The URL of this redirect ends up in the browser history. So we don't want a long lived, directly usable access token here. The short lived authorization code is less dangerous in the history. Note that the Implicit Grant type does put the token in the history.
The security of this redirect depends on the HTTPS certificate of the client, not on Google's certificate. So we get the client's transmission security as an extra attack vector (For this to be unavoidable, the client needs to be non-JavaScript. Since otherwise we could transmit the authorization code via fragment URL, where the code would not go through the network. This may be the reason why Implicit Grant Type, which does use a fragment URL, used to be recommended for JavaScript clients, even though that's no longer so.)
With the Authorization Code Grant Type, the token is finally obtained by a call from the client to the authorization server, where transmission security only depends on the authorization server, not on the client.

Resources