Related
Lets say I have 100 independent features - 90 are binary (e.g. 0/1) and 10 are continuous variables (e.g. age, height, weight, etc). I use the 100 features to predict a classifier problem with an adequate amount of samples.
When I set a XGBClassifier function and fit it, then the 10 most important features from the standpoint of gain are always the 10 continuous variable. For now I am not interested in cover or frequency. The 10 continuous variables take up like .8 to .9 of space in gain list ( sum(gain) = 1).
I tried tuning the gamma, reg_alpha , reg_lambda , max_depth, colsample. Still top 10 features by gain are always the 10 continuous features.
Any suggestions?
small update -- someone asked why I think this is happening. I believe it's because a continuous variable can be split on multiple times per decision tree. A binary variable can only be split on once. Hence, the higher prevalence of continuous variables in trees and thus a higher gain score
Yes, it's well-known that a tree(/forest) algorithm (xgboost/rpart/etc.) will generally 'prefer' continuous variables over binary categorical ones in its variable selection, since it can choose the continuous split-point wherever it wants to maximize the information gain (and can freely choose different split-points for that same variable at other nodes, or in other trees). If that's the optimal tree (for those particular variables), well then it's the optimal tree. See Why do Decision Trees/rpart prefer to choose continuous over categorical variables? on sister site CrossValidated.
When you say "any suggestions", depends what exactly do you want, it could be one of the following:
a) To find which of the other 90 binary categorical features give the most information gain
b) To train a suboptimal tree just to find out which features those are
c) To engineer some "compound" features by combining the binary features into n-bit categorical features which have more information gain (while being sure to remove the individual binary features from the input)
d) You could look into association rules : What is the practical difference between association rules and decision trees in data mining?
If you want to explore a)...c), suggest something vaguely like this:
exclude various subsets of the 10 continuous variables, then see which binary features show up as having the most gain. Let's say that gives you N candidate features. N will be << 90, let's assume N < 20 to make the following more computationally efficient.
then compute the pairwise measure of association or correlation (Spearman or Kendall) between each of the N features. Look at a corrplot. Pick the clusters of variables which are most associated with each other. Create compound n-bit variables which combine those individual binary features. Then retrain the tree, including the compound variables, and excluding the individual binary variables (to avoid changing the total variance in the input).
iterate for excluding various subsets of the 10 continuous variables. See which patterns emerge in your compound variables. I'm sure there's an algorithm for doing this (compound feature-engineering of n-bit categoricals) more formally and methodically, I just don't know it.
Anyway, for hacking a tree-based method for better performance, I imagine the most naive way is "at every step, pick the two most highly-correlated/associated categorical features and combine them". Then retrain the tree (include new feature, exclude its constituent features) and use the revised gain numbers.
perhaps a more robust way might be:
Pick some threshold T for correlation/association, say start at a high level T = 0.9 or 0.95
At each step, merge any features whose absolute correlation/association to each other >= T
If there were no merges at this step, reduce T by some value (like T -= 0.05) or ratio (e.g. T *= 0.9 . If still no merges, keep reducing T until there are merges, or until you hit some termination value (e.g. T = 0.03)
Retrain the tree including the compound variables, excluding their constituent subvariables.
Now go back and retrain what should be an improved tree with all 10 continuous variables, and your compound categorical features.
Or you could early-terminate the compound feature selection to see what the full retrained tree looks like.
This issue arose in the 2014 Kaggle Allstate Purchase Prediction Challenge, where the policy coverage options A,B,C,D,E,F,G were each categoricals with between 2-4 values, and very highly correlated with each other. (The current option of C, "C_previous", is one of the input features). See that competitions's forums and published solutions for more. Be aware that policy = (A,B,C,D,E,F,G) is the output. But C_previous is an input variable.
Some general fast-and-dirty rules-of-thumb on feature selection from Kaggle are:
throw out any near-constant/ very-low-variance variables (because they have near-zero information content)
throw out any very-high-cardinality categorical variables (cardinality >~ training-set-size/2), (because they will also tend to have low information content, but cause lots of spurious overfitting and blow up training time). This can include customer IDs, row IDs, transaction IDs, sequence IDs, and other variables which shouldn't be trained on in the first place but accidentally ended up in the training set.
I can suggest few things for you to try.
Test your model without this data (only 90 features) and evaluate the decrease in your score. If it's insignificant you might want to remove those features.
Turn them into groups.
For example, age can be categorized into groups, 0 : 0-7, 1 : 8-16, 2 : 17-25 and so on.
Turn them into binary. Out of the box idea on how to chose the best value to split them into binary is: Build 1 tree with 1 node (max depth = 1) and use only 1 feature. (1 out of the continuous features). then, dump the model to a .txt file and see the value it chose to split on. using this value, you can transform all that feature column into binary
I'm dealing myself with very similar problems right now, So i'll be happy to hear your results and the paths you chose to try.
I learned a lot from the answer by #smci, so I would recommend to follow his suggestions.
In the case, when your binary categorical features are in fact OHE representations of several categorical features with several classes in each, you can follow two more approaches:
Convert OHE into label encoding. Yes, this has the caveat that one introduces an order into a categorical features, which might be meaningless, for example green=3 > red=2 > blue=1. But in practice is seems that trees handle label=encoded categorical variables (even with meaningless order) reasonably well.
Convert OHE into target-/mean-/likelihood encoding. This is tricky, because you need to apply regularisation to avoid data leakage.
Both of those ideas are meant to group together several binary features into a single one based on prior knowledge about feature meaning. If you do not have that luxury, you can also try to deduce such groups by doing scalar product of columns and finding those giving zero product.
I have a twitter-like(another micro blog) data set with 1.6 million datapoints and tried to predict the its retweet numbers based on its content. I extracted its keyword and use the keywords as the bag of words feature. Then I got 1.2 million dimension feature. The feature vector is very sparse,usually only ten dimension in one data point. And I use SVR to do the regression. Now it has taken 2 days. I think the training time might take quite a long time. I don't know if I do this task like this is normal. Is there any way or is it necessary to optimize this problem?
BTW. If in this case , I don't use any kernel and the machine is 32GB RAM and i-7 16 cores. How long the training time will be in estimation? I used the lib pyml.
You need to find a dimensionality reduction approach that works for your problem.
I've worked on a similar problem to yours and I found that Information Gain worked well, but there are others.
I found this paper (Fabrizio Sebastiani, Machine Learning in Automated Text Categorization, ACM Computing Surveys, Vol. 34, No.1, pp.1-47, 2002) to be a good theoretical treatment of text classification, including feature reduction by a variety of methods from the simple (Term Frequency) to the complex (Information-Theoretic).
These functions try to capture the intuition that the best terms for ci are the
ones distributed most differently in the sets of positive and negative examples of
ci. However, interpretations of this principle vary across different functions. For instance, in the experimental sciences χ2 is used to measure how the results of an observation differ (i.e., are independent) from the results expected according to an initial hypothesis (lower values indicate lower dependence). In DR we measure how independent tk and ci are. The terms tk with the lowest value for χ2(tk, ci) are thus the most independent from ci; since we are interested in the terms which are not, we select the terms for which χ2(tk, ci) is highest.
These techniques help you choose terms that are most useful in separating the training documents into the given classes; the terms with the highest predictive value for your problem.
I've been successful using Information Gain for feature reduction and found this paper (Entropy based feature selection for text categorization Largeron, Christine and Moulin, Christophe and Géry, Mathias - SAC - Pages 924-928 2011) to be a very good practical guide.
Here the authors present a simple formulation of entropy-based feature selection that's useful for implementation in code:
Given a term tj and a category ck, ECCD(tj , ck) can be
computed from a contingency table. Let A be the number
of documents in the category containing tj ; B, the number
of documents in the other categories containing tj ; C, the
number of documents of ck which do not contain tj and D,
the number of documents in the other categories which do
not contain tj (with N = A + B + C + D):
Using this contingency table, Information Gain can be estimated by:
This approach is easy to implement and provides very good Information-Theoretic feature reduction.
You needn't use a single technique either; you can combine them. Ter-Frequency is simple, but can also be effective. I've combined the Information Gain approach with Term Frequency to do feature selection successfully. You should experiment with your data to see which technique or techniques work most effectively.
At first you can simply remove all words with high frequency and all words with low frequency, because both of them don't tell you much about content of a text, then you have to do a word-stemming.
After that you can try to reduce dimensionality of your space, with Feature hashing, or some more advance dimensionality reduction trick (PCA, ICA), or even both of them.
I need some point of view to know if what I am doing is good or wrong or if there is better way to do it.
I have 10 000 elements. For each of them I have like 500 features.
I am looking to measure the separability between 2 sets of those elements. (I already know those 2 groups I don't try to find them)
For now I am using svm. I train the svm on 2000 of those elements, then I look at how good the score is when I test on the 8000 other elements.
Now I would like to now which features maximize this separation.
My first approach was to test each combination of feature with the svm and follow the score given by the svm. If the score is good those features are relevant to separate those 2 sets of data.
But this takes too much time. 500! possibility.
The second approach was to remove one feature and see how much the score is impacted. If the score changes a lot that feature is relevant. This is faster, but I am not sure if it is right. When there is 500 feature removing just one feature don't change a lot the final score.
Is this a correct way to do it?
Have you tried any other method ? Maybe you can try decision tree or random forest, it would give out your best features based on entropy gain. Can i assume all the features are independent of each other. if not please remove those as well.
Also for Support vectors , you can try to check out this paper:
http://axon.cs.byu.edu/Dan/778/papers/Feature%20Selection/guyon2.pdf
But it's based more on linear SVM.
You can do statistical analysis on the features to get indications of which terms best separate the data. I like Information Gain, but there are others.
I found this paper (Fabrizio Sebastiani, Machine Learning in Automated Text Categorization, ACM Computing Surveys, Vol. 34, No.1, pp.1-47, 2002) to be a good theoretical treatment of text classification, including feature reduction by a variety of methods from the simple (Term Frequency) to the complex (Information-Theoretic).
These functions try to capture the intuition that the best terms for ci are the
ones distributed most differently in the sets of positive and negative examples of
ci. However, interpretations of this principle vary across different functions. For instance, in the experimental sciences χ2 is used to measure how the results of an observation differ (i.e., are independent) from the results expected according to an initial hypothesis (lower values indicate lower dependence). In DR we measure how independent tk and ci are. The terms tk with the lowest value for χ2(tk, ci) are thus the most independent from ci; since we are interested in the terms which are not, we select the terms for which χ2(tk, ci) is highest.
These techniques help you choose terms that are most useful in separating the training documents into the given classes; the terms with the highest predictive value for your problem. The features with the highest Information Gain are likely to best separate your data.
I've been successful using Information Gain for feature reduction and found this paper (Entropy based feature selection for text categorization Largeron, Christine and Moulin, Christophe and Géry, Mathias - SAC - Pages 924-928 2011) to be a very good practical guide.
Here the authors present a simple formulation of entropy-based feature selection that's useful for implementation in code:
Given a term tj and a category ck, ECCD(tj , ck) can be
computed from a contingency table. Let A be the number
of documents in the category containing tj ; B, the number
of documents in the other categories containing tj ; C, the
number of documents of ck which do not contain tj and D,
the number of documents in the other categories which do
not contain tj (with N = A + B + C + D):
Using this contingency table, Information Gain can be estimated by:
This approach is easy to implement and provides very good Information-Theoretic feature reduction.
You needn't use a single technique either; you can combine them. Term-Frequency is simple, but can also be effective. I've combined the Information Gain approach with Term Frequency to do feature selection successfully. You should experiment with your data to see which technique or techniques work most effectively.
If you want a single feature to discriminate your data, use a decision tree, and look at the root node.
SVM by design looks at combinations of all features.
Have you thought about Linear Discriminant Analysis (LDA)?
LDA aims at discovering a linear combination of features that maximizes the separability. The algorithm works by projecting your data in a space where the variance within classes is minimum and the one between classes is maximum.
You can use it reduce the number of dimensions required to classify, and also use it as a linear classifier.
However with this technique you would lose the original features with their meaning, and you may want to avoid that.
If you want more details I found this article to be a good introduction.
I have matrices of feature vectors - 200 features long, in which the feature vectors within a matrix are temporally related, but I wish to reduce each matrix to a single, meaningful vector. I have applied PCA to the matrix in order to reduce its dimensionality to one with high variance, and am considering concatenating its rows together into one feature vector to summarize the data.
Is this a sensible approach, or are there better ways of achieving this?
So you have an n x 200 feature matrix, where n is your number of samples, and 200 features per sample, and each feature is temporally related to all others? Or you have individual feature matrices, one for each time point, and you want to run PCA on each of these individual feature matrices to find a single eigenvector for that time point, and then concatenate those together?
PCA seems more useful in the second case.
While this is doable, this is maybe not the best way to go about it because you lose temporal sensitivity by collapsing together features from different times. Even if each feature in your final feature matrix represents a different time, most classifiers cannot learn about the fact that feature 2 follows feature 1 etc. So you lose the natural temporal ordering by doing this.
If you care about the the temporal relationship between these features you may want to take a look at recurrent neural networks, which allow you feed information from t-1 into a node, at the same time as feeding in your current t features. So in a sense they learn about the relationship between t-1 and t features which will help you preserve temporal ordering. See this for an explanation: http://karpathy.github.io/2015/05/21/rnn-effectiveness/
If you don't care about time and just want to group everything together, then yes PCA will help reduce your feature count. Ultimately it depends what type of information you think is more relevant to your problem.
I have around 50K data sets whose value may range between 0 and 10. I want to apply the HAC to cluster these data. But to apply HAC I need to prepare a N*N similarity matrix.
For N = 50 K , this matrix would simply be too large to hold in memory , even if I use short.
Is there any way to do HAC in batches or any other method which could help me to apply HAC with 50K data points. I plan to implement it in java.
I am also worried about total time it would take , any pointers regarding this would be quite helpful.
If you want to apply a top-down clustering approach you could easily distribute it, related article: http://scgroup.hpclab.ceid.upatras.gr/faculty/stratis/Papers/tm07book.pdf
Long story short (quote from other article): After your first node split, each node created can be shipped to a distributed process to be split again and so on... Each distributed process needs only to be aware of the subset of the dataset it is splitting. Only the parent process is aware of the full dataset.
Bottom-up approach is much harder to distribute and I won't try to suggest anything here.
But hey, you don't need to write this in Java yourself, Mahout or MLLib libraries already have it, and they support java. And hadoop
Anyway, here is your example in Java for hadoop if you want to write it yourself:
http://sujitpal.blogspot.ru/2009/09/hierarchical-agglomerative-clustering.html
Finally, a good and big work on comparison of different distributed approaches for hierarchical clustering:
C. F. Olson. "Parallel Algorithms for Hierarchical Clustering." Parallel Computing, 21:1313-1325, 1995, doi:10.1016/0167-8191(95)00017-I.
There are various different HAC methods, but they are generally all lower bounded by O(n^2) complexity. So while 50k is still a doable number of data points, you won't be able to scale this out too far.
I dont know what code you are using, but you don't have to explicitly store the N^2 sized similarity matrix, the similarity values can be computed on the fly / as needed. Scikit learn will do it without explicitly forming the matrix.