classifier using boolean formula - machine-learning

I am trying to find a classifier that is represented by an arbitrary boolean formula. Is it possible to do so ? I tried using the SVC from sklearn.svm using the linear kernel, but not sure if it is correct and if it is, how to extract a formula from the learned classifier.
Here's a simple dataset with 4 variables x,y,z,w (features) and labels 0 and 1. And any data with x=1 or y=1 will have a label 1 and everything else has label 0.
x,y,z,w,label
0,0,0,0,0
0,0,0,1,0
0,0,1,0,1
0,0,1,1,1
0,1,0,0,0
0,1,0,1,0
0,1,1,0,1
0,1,1,1,1
1,0,0,0,1
1,0,0,1,1
1,0,1,0,1
1,0,1,1,1
1,1,0,0,1
1,1,0,1,1
1,1,1,0,1
1,1,1,1,1
For this example, I want to extract the classifier represented by the formula x=1 or z=1. Eventually I will have more complex data represented by complex, arbitrary formula (e.g., (x= 1 or y=0) and (z=0) ... )

The input->output relationships in your data is non-linear, discrete and non-smooth. Any linear models will perform badly in this case. Try instead a DecisionTreeClassifier, which should be OK for your kind of data.
Alternatively you could use a Boolean Satisfiability solver, but this will only work if your data is deterministic and not fuzzy.

Related

Transforming Features to increase similarity

I have a large dataset (~20,000 samples x 2,000 features-- each sample w/ a corresponding y-value) that I'm constructing a regression ML model for.
The input vectors are bitvectors with either 1s or 0s at each position.
Interestingly, I have noticed that when I 'randomly' select N samples such that their y-values are between two arbitrary values A and B (such that B-A is much smaller than the total range of values in y), the subsequent model is much better at predicting other values with the A-->B range not used in the training of the model.
However, the overall similarity of the input X vectors for these values are in no way more similar than any random selection of X values across the whole dataset.
Is there an available method to transform the input X-vectors such that those with more similar y-values are "closer" (I'm not particular the methodology, but it could be something like cosine similarity), and those with not similar y-values are separated?
After more thought, I believe this question can be re-framed as a supervised clustering problem. What might be able to accomplish this might be as simple as:
import umap
print(df.shape)
>> (23,312, 2149)
print(len(target))
>> 23,312
embedding = umap.UMAP().fit_transform(df, y=target)

Dimensions of LSTM variant in Deep Mind's Differentiable Neural Computer (DNC)

I'm trying to implement Deep Mind's DNC - Nature paper- with PyTorch 0.4.0.
When implementing the variant of LSTM they used I encountered some troubles with dimensions.
To simplify suppose BATCH=1.
The equations they list in the paper are these:
where [x;h] means a concatenation of x and h into one single vector, and i, f and o are column vectors.
My question is about how the state s_t is computed.
The second addendum is obtained by multiplying i with a column vector and so the result is either a scalar (transpose i first, then do scalar product) or wrong (two column vectors multiplied).
So the state results in a single scalar...
With the same reasoning the hidden state h_t is a scalar too, but it has to be a column vector.
Obviously I'm wrong somewhere, but I can't figure out where.
By looking at Wikipedia LSTM Article I think I figured it out.
This is the formal implementation of standard LSTM found in the article:
The circle represents element-by-element product.
By using this product in the corresponding parts of DNC equations (s_t and o_t) the dimensions work.

How to decide numClasses parameter to be passed to Random Forest algorithm in SPark MLlib with pySpark

I am working on Classification using Random Forest algorithm in Spark have a sample dataset that looks like this:
Level1,Male,New York,New York,352.888890
Level1,Male,San Fransisco,California,495.8001345
Level2,Male,New York,New York,-495.8001345
Level1,Male,Columbus,Ohio,165.22352099
Level3,Male,New York,New York,495.8
Level4,Male,Columbus,Ohio,652.8
Level5,Female,Stamford,Connecticut,495.8
Level1,Female,San Fransisco,California,495.8001345
Level3,Male,Stamford,Connecticut,-552.8234
Level6,Female,Columbus,Ohio,7000
Here the last value in each row will serve as a label and rest serve as features. But I want to treat label as a category and not a number. So 165.22352099 will denote a category and so will -552.8234. For this I have encoded my features as well as label into categorical data. Now what I am having difficulty in is deciding what should I pass for numClasses parameter in Random Forest algorithm in Spark MlLib? I mean should it be equal to number of unique values in my label? My label has like 10000 unique values so if I put 10000 as value of numClasses then wouldn't it decrease the performance dramatically?
Here is the typical signature of building a model for Random Forest in MlLib:
model = RandomForest.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
numTrees=3, featureSubsetStrategy="auto",
impurity='gini', maxDepth=4, maxBins=32)
The confusion comes from the fact that you are doing something that you should not do. You problem is clearly a regression/ranking, not a classification. Why would you think about it as a classification? Try to answer these two questions:
Do you have at least 100 samples per each value (100,000 * 100 = 1,000,000)?
Is there completely no structure in the classes, so for example - are objects with value "200" not more similar to those with value "100" or "300" than to those with value "-1000" or "+2300"?
If at least one answer is no, then you should not treat this as a classification problem.
If for some weird reason you answered twice yes, then the answer is: "yes, you should encode each distinct value as a different class" thus leading to 10000 unique classes, which leads to:
extremely imbalanced classification (RF, without balancing meta-learner will nearly always fail in such scenario)
extreme number of classes (there are no models able to solve it, for sure RF will not solve it)
extremely small dimension of the problem- looking at as small is your number of features I would be surprised if you could predict from that binary classifiaction. As you can see how irregular are these values, you have 3 points which only diverge in first value and you get completely different results:
Level1,Male,New York,New York,352.888890
Level2,Male,New York,New York,-495.8001345
Level3,Male,New York,New York,495.8
So to sum up, with nearly 100% certainty this is not a classification problem, you should either:
regress on last value (keyword: reggresion)
build a ranking (keyword: learn to rank)
bucket your values to at most 10 different values and then - classify (keywords: imbalanced classification, sparse binary representation)

How are binary classifiers generalised to classify data into arbitrarily large sets?

How can algorithms which partition a space in to halves, such as Suport Vector Machines, be generalised to label data with labels from sets such as the integers?
For example, a support vector machine operates by constructing a hyperplane and then things 'above' the hyperplane take one label, and things below it take the other label.
How does this get generalised so that the labels are, for example, integers, or some other arbitrarily large set?
One option is the 'one-vs-all' approach, in which you create one classifier for each set you want to partition into, and select the set with the highest probability.
For example, say you want to classify objects with a label from {1,2,3}. Then you can create three binary classifiers:
C1 = 1 or (not 1)
C2 = 2 or (not 2)
C3 = 3 or (not 3)
If you run these classifiers on a new piece of data X, then they might return:
C1(X) = 31.6% chance of being in 1
C2(X) = 63.3% chance of being in 2
C3(X) = 89.3% chance of being in 3
Based on these outputs, you could classify X as most likely being from class 3. (The probabilities don't add up to 1 - that's because the classifiers don't know about each other).
If your output labels are ordered (with some kind of meaningful, rather than arbitrary ordering). For example, in finance you want to classify stocks into {BUY, SELL, HOLD}. Although you can't legitimately perform a regression on these (the data is ordinal rather than ratio data) you can assign the values of -1, 0 and 1 to SELL, HOLD and BUY and then pretend that you have ratio data. Sometimes this can give good results even though it's not theoretically justified.
Another approach is the Cramer-Singer method ("On the algorithmic implementation of multiclass kernel-based vector machines").
Svmlight implements it here: http://svmlight.joachims.org/svm_multiclass.html.
Classification into an infinite set (such as the set of integers) is called ordinal regression. Usually this is done by mapping a range of continuous values onto an element of the set. (see http://mlg.eng.cam.ac.uk/zoubin/papers/chu05a.pdf, Figure 1a)

Genetic algorithms: fitness function for feature selection algorithm

I have data set n x m where there are n observations and each observation consists of m values for m attributes. Each observation has also observed result assigned to it. m is big, too big for my task. I am trying to find a best and smallest subset of m attributes that still represents the whole dataset quite well, so that I could use only these attributes for teaching a neural network.
I want to use genetic algorithm for this. The problem is the fittness function. It should tell how well the generated model (subset of attributes) still reflects the original data. And I don't know how to evaluate certain subset of attributes against the whole set.
Of course I could use the neural network(that will later use this selected data anyway) for checking how good the subset is - the smaller the error, the better the subset. BUT, this takes a looot of time in my case and I do not want to use this solution. I am looking for some other way that would preferably operate only on the data set.
What I thought about was: having subset S (found by genetic algorithm), trim data set so that it contains values only for subset S and check how many observations in this data ser are no longer distinguishable (have same values for same attributes) while having different result values. The bigger the number is, the worse subset it is. But this seems to me like a bit too computationally exhausting.
Are there any other ways to evaluate how well a subset of attributes still represents the whole data set?
This cost function should do what you want: sum the factor loadings that correspond to the features comprising each subset.
The higher that sum, the greater the share of variability in the response variable that is explained with just those features. If i understand the OP, this cost function is a faithful translation of "represents the whole set quite well" from the OP.
Reducing to code is straightforward:
Calculate the covariance matrix of your dataset (first remove the
column that holds the response variable, i.e., probably the last
one). If your dataset is m x n (columns x rows), then this
covariance matrix will be n x n, with "1"s down the main diagonal.
Next, perform an eigenvalue decomposition on this covariance
matrix; this will give you the proportion of the total variability
in the response variable, contributed by that eigenvalue (each
eigenvalue corresponds to a feature, or column). [Note,
singular-value decomposition (SVD) is often used for this step, but
it's unnecessary--an eigenvalue decomposition is much simpler, and
always does the job as long as your matrix is square, which
covariance matrices always are].
Your genetic algorithm will, at each iteration, return a set of
candidate solutions (features subsets, in your case). The next task
in GA, or any combinatorial optimization, is to rank those candiate
solutions by their cost function score. In your case, the cost
function is a simple summation of the eigenvalue proportion for each
feature in that subset. (I guess you would want to scale/normalize
that calculation so that the higher numbers are the least fit
though.)
A sample calculation (using python + NumPy):
>>> # there are many ways to do an eigenvalue decomp, this is just one way
>>> import numpy as NP
>>> import numpy.linalg as LA
>>> # calculate covariance matrix of the data set (leaving out response variable column)
>>> C = NP.corrcoef(d3, rowvar=0)
>>> C.shape
(4, 4)
>>> C
array([[ 1. , -0.11, 0.87, 0.82],
[-0.11, 1. , -0.42, -0.36],
[ 0.87, -0.42, 1. , 0.96],
[ 0.82, -0.36, 0.96, 1. ]])
>>> # now calculate eigenvalues & eivenvectors of the covariance matrix:
>>> eva, evc = LA.eig(C)
>>> # now just get value proprtions of each eigenvalue:
>>> # first, sort the eigenvalues, highest to lowest:
>>> eva1 = NP.sort(eva)[::-1]
>>> # get value proportion of each eigenvalue:
>>> eva2 = NP.cumsum(eva1/NP.sum(eva1)) # "cumsum" is just cumulative sum
>>> title1 = "ev value proportion"
>>> print( "{0}".format("-"*len(title1)) )
-------------------
>>> for row in q :
print("{0:1d} {1:3f} {2:3f}".format(int(row[0]), row[1], row[2]))
ev value proportion
1 2.91 0.727
2 0.92 0.953
3 0.14 0.995
4 0.02 1.000
so it's the third column of values just above (one for each feature) that are summed (selectively, depending on which features are present in a given subset you are evaluating with the cost function).

Resources