Classification Using DBSCAN w/ Test-Train Split - machine-learning

The question proposed reads as follows: Use scikit-learn to split the data into a training and test set. Classify the data as either cat or dog using DBSCAN.
I am trying to figure out how to go about using DBSCAN to fit a model using training data and then predict the labels of a testing set. I am well aware that DBSCAN is meant for clustering and not prediction. I have also looked at Use sklearn DBSCAN model to classify new entries as well as numerous other threads. DBSCAN only comes with fit and fit_predict functions, which don't seem relatively useful when trying to fit the model using the training data and then test the model using the testing data.
Is the question worded poorly or am I missing something? I have looked at the scikit-learn documentation as well as looked for examples, but have not had any luck.
# Split the samples into two subsets, use one for training and the other for testing
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
# Instantiate the learning model
dbscan = DBSCAN()
# Fit the model
dbscan.fit(X_train, y_train)
# Predict the response
# Confusion matrix and quantitative metrics
print("The confusion matrix is: " + np.str(confusion_matrix(y_test, dbscan_pred)))
print("The accuracy score is: " + np.str(accuracy_score(y_test, dbscan_pred)))

Whoever gave you that assignment has no clue...
DBSCAN will never predict "cat" or "dog". It just can't.
Because it is an unsupervised algorithm, it doesn't use training labels. y_train is ignored (see the parameter documentation), and it is stupid that sklearn will allow you to pass it at all! It will output sets of points that are clusters. Many tools will enumerate these sets as 1, 2, ... But it won't name a set "dogs".
Furthermore it can't predict on new data either - which you need for predicting on "test" data. So it can't work with a train-test split, but that does not really matter because it does not use labels anyway.

The accepted answer in the question you linked is a pretty good one for you, too: you want to perform classification, not discover structure (which is what clustering does).
DBSCAN, as implemented in scikit-learn, is a transductive algorithm, meaning you can't do predictions on new data. There's an old discussion from 2012 on the scikit-learn repository about this.
Suffice to say, when you're using a clustering algorithm, the concept of train/test splits is less defined. Cross-validation usually involves a different metric; for example, in K-means, the cross-validation is often over the hyperparameter k, rather than mutually exclusive subsets of the data, and the metric that is optimized is the intra-vs-inter cluster variance, rather than F1 accuracy.
Bottom line: trying to perform classification using a clustering technique is effectively square-peg-round-hole. You can jam it through if you really want to, but it'd be considerably easier to just use an off-the-shelf classifier.

Related

Why do we store X_test to y_preds variable in Scikit learn? [closed]

Closed. This question needs details or clarity. It is not currently accepting answers.
Want to improve this question? Add details and clarify the problem by editing this post.
Closed 2 years ago.
Improve this question
I am currently working on a Machine Learning project with no prior hands-on experience of Machine Learning or Python. I have just encountered the following code online, but don't know why is that actually happening.
Where is the trained data stored? is it stored in X_train or X_test?
Why did we predict X_test and stored it to y_preds variable? Since we used y_preds, I was expecting something like this:
y_preds = clf.predict(y_test)
Code:
from sklearn.model_selection import train_test_split
# Using train_test_split() function, defining test data size + storing it to variables of test, train
and split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Fitting the data into the training model defined above
clf.fit(X_train, y_train);
# Making predictions on our trained data
y_preds = clf.predict(X_test)
In general, a learning problem considers a set of n samples of data and then tries to predict properties of unknown data. If each sample is more than a single number and, for instance, a multi-dimensional entry (aka multivariate data), it is said to have several attributes or features.
Learning problems fall into a few categories:
A) supervised learning, in which the data comes with additional attributes that we want to predict (Click here to go to the scikit-learn supervised learning page).This problem can be either:
classification: samples belong to two or more classes and we want to learn from already labeled data how to predict the class of unlabeled data. An example of a classification problem would be handwritten digit recognition, in which the aim is to assign each input vector to one of a finite number of discrete categories. Another way to think of classification is as a discrete (as opposed to continuous) form of supervised learning where one has a limited number of categories and for each of the n samples provided, one is to try to label them with the correct category or class.
regression: if the desired output consists of one or more continuous variables, then the task is called regression. An example of a regression problem would be the prediction of the length of a salmon as a function of its age and weight.
B) unsupervised learning, in which the training data consists of a set of input vectors x without any corresponding target values. The goal in such problems may be to discover groups of similar examples within the data, where it is called clustering, or to determine the distribution of data within the input space, known as density estimation, or to project the data from a high-dimensional space down to two or three dimensions for the purpose of visualization (Click here to go to the Scikit-Learn unsupervised learning page).
Basically, machine learning is about learning some properties of a data set and then testing those properties against another data set. A common practice in machine learning is to evaluate an algorithm by splitting a data set into two. We call one of those sets the training set, on which we learn some properties; we call the other set the testing set, on which we test the learned properties.
Take a look at the link below.
https://scikit-learn.org/stable/user_guide.html
That is an excellent resource for learning all about Scikit Learn. It's hard to get your mind around some of these things, but it's a great learning experience, and it really does work!

Can logistic and lineair regression produce a prediction on a scale?

I currently have a dataset of drawings, each drawing being represented by some features. Each feature (independent variable) is a continuous number. None of the drawings have a label as of yet, which is why I am planning to start a sort of questionaire with people. However, before I can correctly setup such questionaire, I should have an idea of what kind of labels I should use for my training data.
At first thought, I was thinking about letting people rate the drawings on a scale, for example from 1 to 5 with 1 being bad, 3 being average and 5 being good. Alternatively, I could also reduce the question to a simple good or bad question. The latter would mean I lose some valuable information, but the dependent variable could then be considered 'binary'.
Using the training data I then composed, I would need to have a machine learning algorithm (model) which given a drawing, predicts if the drawing is good or not. Ideally, I would have some way of tuning the strictness in this prediction. For example, the model could instead of simply predicting 'good' or 'bad', predict the likelyhood of a painting being good on a scale of 0 to 1. I could then say "Well, let's say all paintings which are 70% likely to be good, are considered as good". Another example would be that the model predicts the goodness using the same categorical values the people used to rate the drawing initially. So it would either predict the drawing being a 1, 2, 3, 4 or 5. Similar to my first example, I could then say "Well, all paintings which are rated at least a 4, are considered good paintings" and tune this threshhold to my liking.
After doing some research, I came up with logistic and linear regression being good candidates. However, if which of the two would be the best for my scenario? Equally important, how would I need to format my labels? Just simple 0's and 1's or a scale?
You could use a 1 vs all representation if you wanted to use a multi-class categorical classification:
Essentially, you train 1 classifier for every category you have (you have 10 categories, so you have 10 classifiers) and then each classifier is just trained to predict whether or not the category belongs to each specific class.
There are alternative ways to make multi-class logistic regression work that only require training a single model, such as by using categorical cross entropy, but given that you'd like to use ordinal data, a linear regression used as a regression model is likely more ideal. You'd predict a value between 1 and 10 and then just round to the nearest integer. This way you aren't penalizing close guesses as much as far away guesses.
what keeps you from using a logistic regression model. Due to a lack of better dataset I used the standard diabetes data. The target variable is an integer between 50 and 200. I normalised the data between [-1,1] such that I can use sigmoid as activation function. For the loss I decided to use
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import MaxPooling2D, Input, Convolution2D
import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
x_train=diabetes.data
y_train=2*(diabetes.target-min(diabetes.target))/(max(diabetes.target)-min(diabetes.target))-1
inputs = tf.keras.Input(shape=(x_train.shape[1],))
outputs = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(inputs)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=tf.keras.optimizers.Adam(), # Optimizer
loss=tf.keras.losses.MSE,
metrics=['sparse_categorical_accuracy'])
history = model.fit(x_train, y_train,
batch_size=64,
epochs=300,
validation_data=(x_train, y_train))
You could also use a linear regression model. There you only need to replace the activation function by linear. However I think the squashing character, besides ensuring hat there is no rating larger 1 or smaller -1.
A last alternative would be to train pair-wise preference. The idea is to show the human two drawings and ask which one he likes more. Then build a binary model, e.g., logistic regression. This approach appears preferable to me as it is easier to answer for the human

Clustering model like DBSCAAN,OPTICS, KMEANS

I have a doubt whether after clustering using any algorithm is it possible to segment new data based on the learning from the previous data
The issue is that clustering algorithms are unsupervised learning algorithms. They don't need a dependent variable to predict classes. They are used to find structures/similarities in the data points. What you can do is, treat the clustered data as your supervised data.
The approach would be clustering and assigning labels in the train data. Treat it as a multi-class classification data, train a new multi-class classification model using your data and validate it on the test data.
Let train and test be the datasets.
clusters <- Clustering(train)
train[y] <- clusters
model <- Classification(train, train[y])
prediction <- model.predict(test)
However interestingly KMeans in sklearn provides fit and predict method. So using KMeans from sklearn you can predict in the new data. However, DBScan doesn't have predict which is quite obvious from it's working mechanism.
Clustering is an unsupervised mechanism where the number of clusters and the identity of the segments which need to be clustered are not known to the system.
Hence what you can do is to obtain the learning of a model which is trained for Clustering , classification,Identification or verification and apply that learning to your use case of clustering.
If the new data is from the same domain of the trained data most probably you will end up with better accuracy in clustering. (You need to properly choose the clustering methodology based on the type of data which you choose. eg for voice clustering Dominant sets and hierarchical clustering will be the most potential candidates).
If the New data is from a different domain then the selected model may fail as it learned the features in correspond to your domain of training data.

Determine most important feature per class

Imagine a machine learning problem where you have 20 classes and about 7000 sparse boolean features.
I want to figure out what the 20 most unique features per class are. In other words, features that are used a lot in a specific class but aren't used in other classes, or hardly used.
What would be a good feature selection algorithm or heuristic that can do this?
When you train a Logistic Regression multi-class classifier the train model is a num_class x num_feature matrix which is called the model where its [i,j] value is the weight of feature j in class i. The indices of features are the same as your input feature matrix.
In scikit-learn you can access to the parameters of the model
If you use scikit-learn classification algorithms you'll be able to find the most important features per class by:
clf = SGDClassifier(loss='log', alpha=regul, penalty='l1', l1_ratio=0.9, learning_rate='optimal', n_iter=10, shuffle=False, n_jobs=3, fit_intercept=True)
clf.fit(X_train, Y_train)
for i in range(0, clf.coef_.shape[0]):
top20_indices = np.argsort(clf.coef_[i])[-20:]
print top20_indices
clf.coef_ is the matrix containing the weight of each feature in each class so clf.coef_[0][2] is the weight of the third feature in the first class.
If when you build your feature matrix you keep track of the index of each feature in a dictionary where dic[id] = feature_name you'll be able to retrieve the name of the top feature using that dictionary.
For more information refer to scikit-learn text classification example
Random Forest and Naive Bayes should be able to handle this for you. Given the sparsity, I'd go for the Naive Bayes first. Random Forest would be better if you're looking for combinations.

What is the difference between supervised learning and unsupervised learning? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 years ago.
Improve this question
In terms of artificial intelligence and machine learning, what is the difference between supervised and unsupervised learning?
Can you provide a basic, easy explanation with an example?
Since you ask this very basic question, it looks like it's worth specifying what Machine Learning itself is.
Machine Learning is a class of algorithms which is data-driven, i.e. unlike "normal" algorithms it is the data that "tells" what the "good answer" is. Example: a hypothetical non-machine learning algorithm for face detection in images would try to define what a face is (round skin-like-colored disk, with dark area where you expect the eyes etc). A machine learning algorithm would not have such coded definition, but would "learn-by-examples": you'll show several images of faces and not-faces and a good algorithm will eventually learn and be able to predict whether or not an unseen image is a face.
This particular example of face detection is supervised, which means that your examples must be labeled, or explicitly say which ones are faces and which ones aren't.
In an unsupervised algorithm your examples are not labeled, i.e. you don't say anything. Of course, in such a case the algorithm itself cannot "invent" what a face is, but it can try to cluster the data into different groups, e.g. it can distinguish that faces are very different from landscapes, which are very different from horses.
Since another answer mentions it (though, in an incorrect way): there are "intermediate" forms of supervision, i.e. semi-supervised and active learning. Technically, these are supervised methods in which there is some "smart" way to avoid a large number of labeled examples. In active learning, the algorithm itself decides which thing you should label (e.g. it can be pretty sure about a landscape and a horse, but it might ask you to confirm if a gorilla is indeed the picture of a face). In semi-supervised learning, there are two different algorithms which start with the labeled examples, and then "tell" each other the way they think about some large number of unlabeled data. From this "discussion" they learn.
Supervised learning is when the data you feed your algorithm with is "tagged" or "labelled", to help your logic make decisions.
Example: Bayes spam filtering, where you have to flag an item as spam to refine the results.
Unsupervised learning are types of algorithms that try to find correlations without any external inputs other than the raw data.
Example: data mining clustering algorithms.
Supervised learning
Applications in which the training data comprises examples of the input vectors along with their corresponding target vectors are known as supervised learning problems.
Unsupervised learning
In other pattern recognition problems, the training data consists of a set of input vectors x without any corresponding target values. The goal in such unsupervised learning problems may be to discover groups of similar examples within the data, where it is called clustering
Pattern Recognition and Machine Learning (Bishop, 2006)
In supervised learning, the input x is provided with the expected outcome y (i.e., the output the model is supposed to produce when the input is x), which is often called the "class" (or "label") of the corresponding input x.
In unsupervised learning, the "class" of an example x is not provided. So, unsupervised learning can be thought of as finding "hidden structure" in unlabelled data set.
Approaches to supervised learning include:
Classification (1R, Naive Bayes, decision tree learning algorithm, such
as ID3 CART, and so on)
Numeric Value Prediction
Approaches to unsupervised learning include:
Clustering (K-means, hierarchical clustering)
Association Rule Learning
I can tell you an example.
Suppose you need to recognize which vehicle is a car and which one is a motorcycle.
In the supervised learning case, your input (training) dataset needs to be labelled, that is, for each input element in your input (training) dataset, you should specify if it represents a car or a motorcycle.
In the unsupervised learning case, you do not label the inputs. The unsupervised model clusters the input into clusters based e.g. on similar features/properties. So, in this case, there is are no labels like "car".
For instance, very often training a neural network is supervised learning: you're telling the network to which class corresponds the feature vector you're feeding.
Clustering is unsupervised learning: you let the algorithm decide how to group samples into classes that share common properties.
Another example of unsupervised learning is Kohonen's self organizing maps.
I have always found the distinction between unsupervised and supervised learning to be arbitrary and a little confusing. There is no real distinction between the two cases, instead there is a range of situations in which an algorithm can have more or less 'supervision'. The existence of semi-supervised learning is an obvious examples where the line is blurred.
I tend to think of supervision as giving feedback to the algorithm about what solutions should be preferred. For a traditional supervised setting, such as spam detection, you tell the algorithm "don't make any mistakes on the training set"; for a traditional unsupervised setting, such as clustering, you tell the algorithm "points that are close to each other should be in the same cluster". It just so happens that, the first form of feedback is a lot more specific than the latter.
In short, when someone says 'supervised', think classification, when they say 'unsupervised' think clustering and try not to worry too much about it beyond that.
Supervised Learning
Supervised learning is based on training a data sample
from data source with correct classification already assigned.
Such techniques are utilized in feedforward or MultiLayer
Perceptron (MLP) models. These MLP has three distinctive
characteristics:
One or more layers of hidden neurons that are not part of the input
or output layers of the network that enable the network to learn and
solve any complex problems
The nonlinearity reflected in the neuronal activity is
differentiable and,
The interconnection model of the network exhibits a high degree of
connectivity.
These characteristics along with learning through training
solve difficult and diverse problems. Learning through
training in a supervised ANN model also called as error backpropagation algorithm. The error correction-learning
algorithm trains the network based on the input-output
samples and finds error signal, which is the difference of the
output calculated and the desired output and adjusts the
synaptic weights of the neurons that is proportional to the
product of the error signal and the input instance of the
synaptic weight. Based on this principle, error back
propagation learning occurs in two passes:
Forward Pass:
Here, input vector is presented to the network. This input signal propagates forward, neuron by neuron through the network and emerges at the output end of
the network as output signal: y(n) = φ(v(n)) where v(n) is the induced local field of a neuron defined by v(n) =Σ w(n)y(n). The output that is calculated at the output layer o(n) is compared with the desired response d(n) and finds the error e(n) for that neuron. The synaptic weights of the network during this pass are remains same.
Backward Pass:
The error signal that is originated at the output neuron of that layer is propagated backward through network. This calculates the local gradient for each neuron in each layer and allows the synaptic weights of the network to undergo changes in accordance with the delta rule as:
Δw(n) = η * δ(n) * y(n).
This recursive computation is continued, with forward pass followed by the backward pass for each input pattern till the network is converged.
Supervised learning paradigm of an ANN is efficient and finds solutions to several linear and non-linear problems such as classification, plant control, forecasting, prediction, robotics etc.
Unsupervised Learning
Self-Organizing neural networks learn using unsupervised learning algorithm to identify hidden patterns in unlabelled input data. This unsupervised refers to the ability to learn and organize information without providing an error signal to evaluate the potential solution. The lack of direction for the learning algorithm in unsupervised learning can sometime be advantageous, since it lets the algorithm to look back for patterns that have not been previously considered. The main characteristics of Self-Organizing Maps (SOM) are:
It transforms an incoming signal pattern of arbitrary dimension into
one or 2 dimensional map and perform this transformation adaptively
The network represents feedforward structure with a single
computational layer consisting of neurons arranged in rows and
columns. At each stage of representation, each input signal is kept
in its proper context and,
Neurons dealing with closely related pieces of information are close
together and they communicate through synaptic connections.
The computational layer is also called as competitive layer since the neurons in the layer compete with each other to become active. Hence, this learning algorithm is called competitive algorithm. Unsupervised algorithm in SOM
works in three phases:
Competition phase:
for each input pattern x, presented to the network, inner product with synaptic weight w is calculated and the neurons in the competitive layer finds a discriminant function that induce competition among the neurons and the synaptic weight vector that is close to the input vector in the Euclidean distance is announced as winner in the competition. That neuron is called best matching neuron,
i.e. x = arg min ║x - w║.
Cooperative phase:
the winning neuron determines the center of a topological neighborhood h of cooperating neurons. This is performed by the lateral interaction d among the
cooperative neurons. This topological neighborhood reduces its size over a time period.
Adaptive phase:
enables the winning neuron and its neighborhood neurons to increase their individual values of the discriminant function in relation to the input pattern
through suitable synaptic weight adjustments,
Δw = ηh(x)(x –w).
Upon repeated presentation of the training patterns, the synaptic weight vectors tend to follow the distribution of the input patterns due to the neighborhood updating and thus ANN learns without supervisor.
Self-Organizing Model naturally represents the neuro-biological behavior, and hence is used in many real world applications such as clustering, speech recognition, texture segmentation, vector coding etc.
Reference.
There are many answers already which explain the differences in detail. I found these gifs on codeacademy and they often help me explain the differences effectively.
Supervised Learning
Notice that the training images have labels here and that the model is learning the names of the images.
Unsupervised Learning
Notice that what's being done here is just grouping(clustering) and that the model doesn't know anything about any image.
Machine learning:
It explores the study and construction of algorithms that can learn from and make predictions on data.Such algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions expressed as outputs,rather than following strictly static program instructions.
Supervised learning:
It is the machine learning task of inferring a function from labeled training data.The training data consist of a set of training examples. In supervised learning, each example is a pair consisting of an input object (typically a vector) and a desired output value (also called the supervisory signal). A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.
The computer is presented with example inputs and their desired outputs, given by a "teacher", and the goal is to learn a general rule that maps inputs to outputs.Specifically, a supervised learning algorithm takes a known set of input data and known responses to the data (output), and trains a model to generate reasonable predictions for the response to new data.
Unsupervised learning:
It is learning without a teacher. One basic
thing that you might want to do with data is to visualize it. It is the machine learning task of inferring a function to describe hidden structure from unlabeled data. Since the examples given to the learner are unlabeled, there is no error or reward signal to evaluate a potential solution. This distinguishes unsupervised learning from supervised learning. Unsupervised learning uses procedures that attempt to find natural partitions
of patterns.
With unsupervised learning there is no feedback based on the prediction results, i.e., there is no teacher to correct you.Under the Unsupervised learning methods no labeled examples are provided and there is no notion of the output during the learning process. As a result, it is up to the learning scheme/model to find patterns or discover the groups of the input data
You should use unsupervised learning methods when you need a large
amount of data to train your models, and the willingness and ability
to experiment and explore, and of course a challenge that isn’t well
solved via more-established methods.With unsupervised learning it is
possible to learn larger and more complex models than with supervised
learning.Here is a good example on it
.
Supervised Learning: You give variously labelled example data as input, along with the correct answers. This algorithm will learn from it, and start predicting correct results based on the inputs thereafter. Example: Email Spam filter
Unsupervised Learning: You just give data and don't tell anything - like labels or correct answers. Algorithm automatically analyses patterns in the data. Example: Google News
Supervised learning:
say a kid goes to kinder-garden. here teacher shows him 3 toys-house,ball and car. now teacher gives him 10 toys.
he will classify them in 3 box of house,ball and car based on his previous experience.
so kid was first supervised by teachers for getting right answers for few sets. then he was tested on unknown toys.
Unsupervised learning:
again kindergarten example.A child is given 10 toys. he is told to segment similar ones.
so based on features like shape,size,color,function etc he will try to make 3 groups say A,B,C and group them.
The word Supervise means you are giving supervision/instruction to machine to help it find answers. Once it learns instructions, it can easily predict for new case.
Unsupervised means there is no supervision or instruction how to find answers/labels and machine will use its intelligence to find some pattern in our data. Here it will not make prediction, it will just try to find clusters which has similar data.
Supervised learning, given the data with an answer.
Given email labeled as spam/not spam, learn a spam filter.
Given a dataset of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not.
Unsupervised learning, given the data without an answer, let the pc to group things.
Given a set of news articles found on the web, group the into set of articles about the same story.
Given a database of custom data, automatically discover market segments and group customers into different market segments.
Reference
Supervised Learning
In this, every input pattern that is used to train the network is
associated with an output pattern, which is the target or the desired
pattern. A teacher is assumed to be present during the learning
process, when a comparison is made between the network's computed
output and the correct expected output, to determine the error. The
error can then be used to change network parameters, which result in
an improvement in performance.
Unsupervised Learning
In this learning method, the target output is not presented to the
network. It is as if there is no teacher to present the desired
pattern and hence, the system learns of its own by discovering and
adapting to structural features in the input patterns.
I'll try to keep it simple.
Supervised Learning: In this technique of learning, we are given a data set and the system already knows the correct output of the data set. So here, our system learns by predicting a value of its own. Then, it does an accuracy check by using a cost function to check how close its prediction was to the actual output.
Unsupervised Learning: In this approach, we have little or no knowledge of what our result would be. So instead, we derive structure from the data where we don't know effect of variable.
We make structure by clustering the data based on relationship among the variable in data.
Here, we don't have a feedback based on our prediction.
Supervised learning
You have input x and a target output t. So you train the algorithm to generalize to the missing parts. It is supervised because the target is given. You are the supervisor telling the algorithm: For the example x, you should output t!
Unsupervised learning
Although segmentation, clustering and compression are usually counted in this direction, I have a hard time to come up with a good definition for it.
Let's take auto-encoders for compression as an example. While you only have the input x given, it is the human engineer how tells the algorithm that the target is also x. So in some sense, this is not different from supervised learning.
And for clustering and segmentation, I'm not too sure if it really fits the definition of machine learning (see other question).
Supervised Learning: You have labeled data and have to learn from that. e.g house data along with price and then learn to predict price
Unsupervised learning: you have to find the trend and then predict, no prior labels given.
e.g different people in the class and then a new person comes so what group does this new student belong to.
In Supervised Learning we know what the input and output should be. For example , given a set of cars. We have to find out which ones red and which ones blue.
Whereas, Unsupervised learning is where we have to find out the answer with a very little or without any idea about how the output should be. For example, a learner might be able to build a model that detects when people are smiling based on correlation of facial patterns and words such as "what are you smiling about?".
Supervised learning can label a new item into one of the trained labels based on learning during training. You need to provide large numbers of training data set, validation data set and test data set. If you provide say pixel image vectors of digits along with training data with labels, then it can identify the numbers.
Unsupervised learning does not require training data-sets. In unsupervised learning it can group items into different clusters based on the difference in the input vectors. If you provide pixel image vectors of digits and ask it to classify into 10 categories, it may do that. But it does know how to labels it as you have not provided training labels.
Supervised Learning is basically where you have input variables(x) and output variable(y) and use algorithm to learn the mapping function from input to the output. The reason why we called this as supervised is because algorithm learns from the training dataset, the algorithm iteratively makes predictions on the training data.
Supervised have two types-Classification and Regression.
Classification is when the output variable is category like yes/no, true/false.
Regression is when the output is real values like height of person, Temperature etc.
UN supervised learning is where we have only input data(X) and no output variables.
This is called an unsupervised learning because unlike supervised learning above there is no correct answers and there is no teacher. Algorithms are left to their own devises to discover and present the interesting structure in the data.
Types of unsupervised learning are clustering and Association.
Supervised Learning is basically a technique in which the training data from which the machine learns is already labelled that is suppose a simple even odd number classifier where you have already classified the data during training . Therefore it uses "LABELLED" data.
Unsupervised learning on the contrary is a technique in which the machine by itself labels the data . Or you can say its the case when the machine learns by itself from scratch.
In Simple
Supervised learning is type of machine learning problem in which we have some labels and by using that labels we implement algorithm such as regression and classification .Classification is applied where our output is like in the form of
0 or 1 ,true/false,yes/no. and regression is applied where out put a real value such a house of price
Unsupervised Learning is a type of machine learning problem in which we don't have any labels means we have some data only ,unstructured data and we have to cluster the data (grouping of data)using various unsupervised algorithm
Supervised Machine Learning
"The process of an algorithm learning from training dataset and
predict the output. "
Accuracy of predicted output directly proportional to the training data (length)
Supervised learning is where you have input variables (x) (training dataset) and an output variable (Y) (testing dataset) and you use an algorithm to learn the mapping function from the input to the output.
Y = f(X)
Major types:
Classification (discrete y-axis)
Predictive (continuous y-axis)
Algorithms:
Classification Algorithms:
Neural Networks
Naïve Bayes classifiers
Fisher linear discriminant
KNN
Decision Tree
Super Vector Machines
Predictive Algorithms:
Nearest neighbor
Linear Regression,Multi Regression
Application areas:
Classifying emails as spam
Classifying whether patient has
disease or not
Voice Recognition
Predict the HR select particular candidate or not
Predict the stock market price
Supervised learning:
A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.
We provide training data and we know correct output for a certain input
We know relation between input and output
Categories of problem:
Regression: Predict results within a continuous output => map input variables to some continuous function.
Example:
Given a picture of a person, predict his age
Classification: Predict results in a discrete output => map input variables into discrete categories
Example:
Is this tumer cancerous?
Unsupervised learning:
Unsupervised learning learns from test data that has not been labeled, classified or categorized. Unsupervised learning identifies commonalities in the data and reacts based on the presence or absence of such commonalities in each new piece of data.
We can derive this structure by clustering the data based on relationships among the variables in the data.
There is no feedback based on the prediction results.
Categories of problem:
Clustering: is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (clusters)
Example:
Take a collection of 1,000,000 different genes, and find a way to automatically group these genes into groups that are somehow similar or related by different variables, such as lifespan, location, roles, and so on.
Popular use cases are listed here.
Difference between classification and clustering in data mining?
References:
Supervised_learning
Unsupervised_learning
machine-learning from coursera
towardsdatascience
Supervised Learning
Unsupervised Learning
Example:
Supervised Learning:
One bag with apple
One bag with orange
=> build model
One mixed bag of apple and orange.
=> Please classify
Unsupervised Learning:
One mixed bag of apple and orange.
=> build model
Another mixed bag
=> Please classify
In simple words.. :) It's my understanding, feel free to correct.
Supervised learning is, we know what we are predicting on the basis of provided data. So we have a column in the dataset which needs to be predicated.
Unsupervised learning is, we try to extract meaning out of the provided dataset. We don't have clarity on what to be predicted. So question is why we do this?.. :) Answer is - the outcome of Unsupervised learning is groups/clusters(similar data together). So if we receive any new data then we associate that with the identified cluster/group and understand it's features.
I hope it will help you.
supervised learning
supervised learning is where we know the output of the raw input, i.e the data is labelled so that during the training of machine learning model it will understand what it need to detect in the give output, and it will guide the system during the training to detect the pre-labelled objects on that basis it will detect the similar objects which we have provided in training.
Here the algorithms will know what's the structure and pattern of data. Supervised learning is used for classification
As an example, we can have a different objects whose shapes are square, circle, trianle our task is to arrange the same types of shapes
the labelled dataset have all the shapes labelled, and we will train the machine learning model on that dataset, on the based of training dateset it will start detecting the shapes.
Un-supervised learning
Unsupervised learning is a unguided learning where the end result is not known, it will cluster the dataset and based on similar properties of the object it will divide the objects on different bunches and detect the objects.
Here algorithms will search for the different pattern in the raw data, and based on that it will cluster the data. Un-supervised learning is used for clustering.
As an example, we can have different objects of multiple shapes square, circle, triangle, so it will make the bunches based on the object properties, if a object has four sides it will consider it square, and if it have three sides triangle and if no sides than circle, here the the data is not labelled, it will learn itself to detect the various shapes
Machine learning is a field where you are trying to make machine to mimic the human behavior.
You train machine just like a baby.The way humans learn, identify features, recognize patterns and train himself, same way you train machine by feeding data with various features. Machine algorithm identify the pattern within the data and classify it into particular category.
Machine learning broadly divided into two category, supervised and unsupervised learning.
Supervised learning is the concept where you have input vector / data with corresponding target value (output).On the other hand unsupervised learning is the concept where you only have input vectors / data without any corresponding target value.
An example of supervised learning is handwritten digits recognition where you have image of digits with corresponding digit [0-9], and an example of unsupervised learning is grouping customers by purchasing behavior.

Resources